Искусственный интеллект: что это такое и как его использовать обычному человеку? Выращивание искусственного интеллекта на примере простой игры Применение искусственного интеллекта

Искусственный интеллект: что это такое и как его использовать обычному человеку? Выращивание искусственного интеллекта на примере простой игры Применение искусственного интеллекта

Интервью с профессором Игорем Баскиным, доктором физико-математических наук, ведущим научный сотрудник физического факультета МГУ.

В чем самая большая сложность для нейронных сетей, чтобы научиться устанавливать взаимосвязь между структурой вещества и его физическими и химическими свойствами?

Самая большая сложность и ключевая особенность применения нейронных сетей, как и любого другого метода машинного обучения, для поиска соотношений между структурой и свойствами химических веществ заключается в том, что в этом случае они должны моделировать реальную природу с ее чрезвычайно сложной и порой неизвестной организацией, управляемую строгими, но не всегда применимыми на практике законами.

В этом состоит фундаментальное отличие от стандартных задач, решаемых при помощи нейронных сетей, например, распознавания изображений. Действительно, то, что цифра 8 изображается в виде двух соприкасающихся окружностей, не является следствием каких-либо законов природы – это просто предмет соглашений между людьми. А вот римляне в свое время решили, что для них лучше изображать это же число как VIII. Поскольку такие соглашения делаются ради удобства, их форма выбирается такой, чтобы естественные нейронные сети в голове у человека очень легко на подсознательном уровне их распознавали.

Поэтому, как мне кажется, и искусственные нейронные сети, которые в какой-то мере имитируют определенные аспекты обработки информации в голове у человека, с ними тоже легко справляются.

А теперь перейдем к химическим веществам. То, что аспирин оказывает противовоспалительное действие, обуславливается возможностью входящих в его состав молекул ацетилсалициловой кислоты ингибировать фермент циклооксигеназу благодаря комплементарности пространственных форм молекул лекарства и фермента и благоприятному балансу множества сил, действующих в системе.

Задача прогнозирования свойств химических веществ в зависимости от их строения, в отличие, например, от задачи распознавания изображений, никогда раньше в процессе эволюции не встречалась, и потому естественные нейронные сети в нашем мозгу не могут с такой же легкостью ее решать на подсознательном уровне.

Действительно, любой ребенок (и даже некоторые животные) может легко отличить на картинке кошку от собаки, но даже десяток нобелевских лауреатов, посмотрев на формулу химического соединения, вряд ли сразу же точно угадают полный набор его свойств.

Это уже задача другого уровня сложности. В ее решении большой проблемой является даже то, что обычно вообще не воспринимается как нечто сложное, например, как представить нейронной сети анализируемый объект. При обработке изображений, например, естественным представлением является набор интенсивностей пикселов.

А вот то, как лучше всего представить для нейронной сети строение вещества – это уже задача из задач, и она не имеет столь простых решений. Используемые для ее решения системы т.н. молекулярных дескрипторов, т.е. специальных вычислительных процедур, позволяющих описать строение вещества с помощью набора чисел, обладают множеством недостатков. Тем, как лучше всего представлять и обрабатывать информацию о химических веществах занимается очень интенсивно развиваемая в последние годы наука – хемоинформатика.

Без опоры на научный багаж, накопленный в хемоинформатике, любая попытка использовать нейронные сети для установления связи между строением вещества и его свойствами превращается в чистую игру с числами и не приводит к практически важным результатам. В этом, наверное, и заключается основная сложность использования нейронных сетей для этой цели.

Назовите 10 основных задач для искусственного интеллекта в синтетической химии?

1. Как синтезировать заданное химическое соединение из доступных реагентов?
2. Как синтезировать химическое соединение, обладающее заданной активностью?
3. Как будет выглядеть и как синтезировать комбинаторную библиотеку химических соединений, ориентированную на заданный тип биологической активности?
4. Что получится в результате реакции, если смешать заданные химические соединения в заданных условиях?
5. В каких условиях следует проводить заданную реакцию? Как оптимизировать такие условия (температура, растворитель, катализатор, добавки)?
6. Какой вероятный механизм у заданной реакции?
7. Как увеличить выход у заданной реакции?
8. Перечислить возможные химические реакции
9. Оценка синтетической доступности (легкости синтеза) заданного соединения.
10. Предсказать кинетические и термодинамические характеристики простых реакции и выход сложных реакций.

Что из себя представляет задача - расчет всех возможных химических реакций?

Возможно, это комбинация двух вышеперечисленных задач: (8) перечисление возможных химических реакций и (10) предсказать для них кинетические и термодинамические характеристики и выход.

Какой способ сейчас наилучший в хемоинформатики представления о структуре вещества? Какие-нибудь многомерные матрицы? Насколько они полно описывают всю структуру? Есть ли пробелы, которые нужно заполнить?

Простого и однозначного ответа на этот вопрос не существует. Все зависит от того, о каких типах веществ идет речь, а также при каких условиях и в каких агрегатных состояниях они рассматриваются. Кроме того, выбор конкретного типа представления зависит от того, с какой целью оно делается – для однозначной идентификации вещества, хранения в базе данных, для построения каких-либо моделей, для передачи информации между программами.

В хемоинформатике для всех этих целей, как правило, используются разные представления. Наиболее простым случаем являются насыщенные углеводороды – органические соединения, состоящие только из атомов углерода и водорода и не содержащие кратных связей. Для их представления удобно использовать графы, в которых вершины соответствуют атомам углерода, а ребра – связям между ними. Интересно отметить, что именно задача объяснения наличия различных изомеров у органических соединений послужила стимулом для создания и разработки основ теории графов, а задача перечисления изомеров – комбинаторной теории групп. Оба эти раздела дискретной математики в дальнейшем нашли очень широкое применение практически во всех областях научных знаний.

Следующий уровень усложнения – произвольные низкомолекулярные органические соединений. Таковыми являются, например, молекулы большинства лекарственных препаратов, а также исходные реагенты и полупродукты для их синтеза. Для их идентификации также удобно использовать графы, но на этот раз с мечеными вершинами и ребрами. Метками вершин в этом случае служат обозначения химических элементов, а метками ребер – порядки связей.

Для внутреннего представления молекул в оперативной памяти компьютера можно в этом случае использовать матрицы связности графов, но реально чаще пользуются сложными структурами данных, включающими таблицы атомов и связей.

Для эффективной организации поиска структур в базах данных и их сравнения между собой наибольшей популярностью среди представлений пользуются специальные битовые строки, называемые «молекулярными отпечатками пальцев» (фингерпринтами).

Для построения моделей, связывающих структуры соединений с их свойствами, в качестве представлений используются вектора признаков, называемых в хемоинформатике «молекулярными дескрипторами». Существует огромное разнообразие (тысячи!) различных типов молекулярных дескрипторов.

Для обмена информации между программами и для «внешнего» представления химических структур наибольшей популярностью в настоящее время пользуются текстовые строки, называемые SMILES. Задача представления органических соединений осложняется такими сугубо химическими явлениями, как электролитическая диссоциация, мезомерия и таутомерия, вследствие чего одно органическое вещество может быть описано целым набором различных графов и, следовательно, может иметь несколько представлений, из которых для целей идентификации обычно выбирают «каноническое» представление.

Задача еще более осложняется, если необходимо учесть геометрическую и пространственную изомерию (стереоизомерию), что не всегда возможно сделать на уровне графов и часто требует элементов гиперграфового представления. Также для целей моделирования требуется учесть наличие у гибких молекул множества пространственных форм – конформеров. Все эти обстоятельства должны быть учтены при выборе представлений химических веществ для машинного обучения.

На следующих уровнях усложнения, например, при переходе к супрамолекулярным комплексам, синтетическим полимерам, твердотельным материалам, задача поиска наиболее адекватного представления для структуры вещества становится еще более сложной, и для нее к настоящему времени не предложено удовлетворительного решения.

Существующие подходы в информатике полимеров и кристаллов ориентированы главным образом на моделирование, и то для самых простых случаев, а попыток создания информатики для супрамолекулярной химии еще не предпринималось. Таким образом, здесь надо говорить не о пробелах, а о небольших исследованных территорий внутри большой terra incognito.

Для интересующихся методами представлений химических веществ на компьютере я бы рекомендовал нашу монографию: Т.И.Маджидов, И.И.Баскин, И.С.Антипин, А.А. Варнек «Введение в хемоинформатику. Компьютерное представление химических структур». Казань: Казан. ун-т, 2013, ISBN 978-5-00019-131-6.

Какие основные достижения в синтетической химии произошли в этом году?

Синтетической органической химии уже почти 200 лет, и основной пик ее развития как фундаментальной науки пришелся на вторую половину прошлого века, когда были сформулированы ее основные законы и показана реальная возможность синтезировать вещества любого уровня сложности.

Сейчас все больше говорят о синтетической химии как об уже устоявшейся прикладной дисциплине, главной задачей которой является поиск оптимальных способов получения веществ с необходимыми свойствами. Вследствие этого она давно уже разделилась на множество областей (например, медицинская химия, нефтехимия, катализ, химия различных типов материалов), в каждой из которой идет непрерывное поступательное развитие.

Для меня наибольший интерес представляют работы последних лет в области роботохимии – новой научно-прикладной дисциплины, направленной на автоматизацию процесса синтеза веществ при помощи специальных роботов, работающих под управлением компьютеров.

Особенно хотелось бы отметить достижения последних лет по созданию миниатюрных химических реакторов, интегрированных в компьютерные чипы, что позволяет осуществлять синтез, выделение, анализ и даже биологические испытания синтезированных веществ в буквальном смысле внутри компьютера под управлением искусственного интеллекта.

Каковы успехи машинного обучения в синтетической химии? Где мы стоим?

Начну с пояснения исторического контекста. С тех пор, когда в пятидесятых годах прошлого века появился термин «искусственный интеллект», химия (и в особенности синтетическая органическая химия) рассматривалась, наряду с медицинской диагностикой, как одна из основных сфер его будущего применения. Большинство остальных задач было поставлено значительно позже.

На первом этапе его развития основной упор делался на использование т.н. экспертных систем, основанных на хранимых в базах знаний правилах, сформулированных химиками-экспертами, и механизме логического вывода.

Первой успешной экспертной системой в области синтетической химии стала разработанная под руководством нобелевского лауреата по химии Элайаса Кори к началу 70-ых годов прошлого века программа LHASA. Можно утверждать, что LHASA совершила в свое время революцию как в области синтетической органической химии, так и искусственного интеллекта, и определила основные направления развития компьютерной синтетической химии на долгие годы вперед. Так получилось, что именно синтетическая химия стала той области, где еще в 80-ых годах возможности искусственного интеллекта подошли очень близко и почти сравнялись с возможностями опытных химиков-синтетиков. Это и определило в 70-ые и 80-ые годы популярность синтетической химии среди специалистов по искусственному интеллекту.

Тем не менее, несмотря на большие успехи, достигнутые искусственным интеллектов в области синтетической химии, к 90-ым годам популярность этого направления резко уменьшилась и даже практически стала нулевой.

Произошла парадоксальная вещь, до сих пор обсуждаемая в кругу специалистов. Хотя возможности компьютера по планированию синтеза подошли близко к возможностям химиков-синтетиков, последние все равно нужны, чтобы проводить синтез, и никакой компьютер их в этом не заменит. В результате этого компьютерная программа стала восприниматься как дорогостоящая «игрушка», без которой можно обойтись и на которую не стоит тратить деньги. Это как раз совпало с началом «зимы» в области искусственного интеллекта, когда стали ясны принципиальные недостатки основанных на правилах экспертных систем: лишь небольшая часть знаний может быть представлена и сформулирована экспертами в виде четких правил, и поэтому их основная масса, воспринимаемая экспертами лишь на уровне интуиции, оказывается незадействованной в рамках экспертных систем.

Примерно это и привело в свое время к краху некогда амбициозной японской программы компьютеров пятого поколения.

Первые работы по использованию машинного обучения в планировании синтеза появились в конце 80-ых и начале 90-ых годов как попытки преодолеть вышеупомянутый недостаток основанных на правилах экспертных систем, научив компьютер самостоятельно (без помощи людей-экспертов) извлекать знания по реакционной способности химических соединений из начавших тогда формироваться баз данных, содержащих сведения об опубликованных в литературе химических реакциях.

Сначала эти знания имели форму правил, предназначенных для пополнения баз знаний, входящих в существующие экспертные системы, а потом стали извлекаться и «нечеткие» правила, имитирующие интуицию химика-синтетика, для чего еще в начале 90-ых годов стали использоваться нейронные сети. Надо сказать, что и в настоящее время задача автоматического извлечения знаний о реакционной способности из баз данных по опубликованным реакциям для последующего использования в рамках экспертных систем нового поколения является центральным направлением применения машинного обучения в синтетической химии.

Другим важным направлением сейчас является также и использование машинного обучения для установления связи между структурой вещества и его свойствами, что позволяет осуществлять синтез тех веществ, которые, согласно построенным моделям, должны характеризоваться нужным набором свойств.

Первые примеры автоматического извлечения данных использовали базы данных из десятков реакций, дальше пошли тысячи, десятки тысяч, а сейчас работа уже идет с миллионами и десятками миллионов реакций, которые охватывают уже все реакции, проведенные во всем мире за 200 лет существования синтетической химии. Произошел переход количество в качество, и мир вступил в эпоху «больших данных» (big data). С начала 90-ых годов мощность компьютеров возросла на несколько порядков, особенно с появлением графических карт GPU.

В последние годы также и стала доступна методология «глубокого обучения» (deep learning), позволяющая извлекать из большого объема данных знания, основанные на очень сложных закономерностях. Все это привело в последние годы к взрыву интереса к использованию искусственного интереса в синтетической химии. За последние два года было опубликовано больше важных и интересных работ, чем за предыдущие 20 лет вместе взятых. Таким образом «зима» закончилась и сразу же без «весны» сменилась очень «жарким летом». В настоящее время вследствие огромного объема накопленных знаний человеку, даже очень опытному химику-синтетику, становится очень сложно состязаться с искусственным интеллектом в планировании синтеза.

Для желающих разобраться в этом вопросе более подробно я бы рекомендовал нашу только что вышедшую монографию: И.И.Баскин, Т.И.Маджидов, А.А.Варнек «Введение в хемоинформатику. Часть 5. Информатика химических реакций». Казань: Казан. ун-т, 2017, ISBN 978-5-00019-907-7.

Насколько близки мы, чтобы перечислить возможные химические реакции? Науке известно порядка 90 миллионов реакций? Какой порядок неизвестного ?

Перечислять можно только что-то дискретное и четко различающиеся между собой, например низкомолекулярные органические соединения, которые описываются разными графами. В случае же реакций сама постановка задачи перечисления является очень неочевидной. Например, реакция гидролиза этилацетата и метилацетата – это разные реакции или два примера одной и той же реакции?

Гидролиз этилацетата в щелочной и кислой средах – это разные реакции или одна и та же реакция, проводимая в разных условиях? Таким образом, сама по себе постановка перечисления реакций имеет смысл только в рамках конкретной схемы классификации реакций, определяющей, что считается одной реакцией, а что разными.

Существует множество разных схем классификации органических реакций, и все они имеют многоуровневую иерархическую структуру. На самом низком (подробном) уровне, где реакции образования разных соединений считаются разными реакциями, число реакций не может быть меньше числа химических соединений, а низкомолекулярных соединений даже по самым скромным оценкам 10 в степени 60, то есть значительно больше, чем элементарных частиц во всей Вселенной. На самом же высоком (абстрактном) уровне их может быть очень мало. Например, большинство элементарных стадий органических реакций описываются всего лишь несколькими общими схемами перераспределения связей. Все зависит от того, что мы вкладываем в понятие перечисления реакций.

Опишите, пожалуйста, более подробно задачу: «Как будет выглядеть и как синтезировать комбинаторную библиотеку химических соединений, ориентированную на заданный тип биологической активности?»

Допустим, известно, что некоторые соединения определенного класса (например, замещенные пиразолы) проявляют желаемый вид биологической активности. Задача состоит в том, чтобы синтезировать другие представители этого же класса в одну стадию с высоким выходом, комбинируя различные прекурсоры (исходные реагенты для синтеза) из каталога коммерчески доступных веществ.

Синтезированный таким образом набор (библиотеку) химических соединений можно отдать на биологические испытания, которые вполне могут выявить соединения с улучшенным набором свойств. Это вполне реальная задача, часто возникающая при разработке новых лекарственных препаратов на этапе «оптимизации свойств лидера» (lead optimization).

Компьютерная программа в этом случае должна предложить метод синтезов соединений выбранного класса в одну стадию из нескольких прекурсоров, найти в каталоге подходящие для этого прекурсоры и для каждой их комбинации оценить возможность протекания реакции синтеза с высоким выходом. На решение подобных задач ориентирован, например, один из модулей компьютерной системы WODCA (W.-D. Ihlenfeldt, J. Gasteiger, Angew. Chem., Int. Ed. Engl., 1995, 40, 993-1007).

Какие научные группы в мире – лидеры использования ИИ в синтетической химии? Каковы их достижения?

Таких групп уже много. Выборочно перечислю несколько групп, активно работающих в настоящее время в этом направлении.

1. Й. Гастайгер (J. Gasteiger, Эрланген, Германия) – один из «отцов» хемоинформатики, внесший огромный вклад в формировании хемоинформатики как науки, пионер в использовании нейронных сетей в химии. Под его руководством разработано несколько компьютерных систем планирования органического синтеза: EROS, WODCA. В плане использования ИИ в синтетической химии особый интерес представляют его работы по использованию самоорганизующихся нейронных сетей Кохонена для картирования химических реакций и извлечения знаний о реакционной способности органических соединений.

2. Г. Шнайдер (G. Schneider, Цюрих, Швейцария). С точки зрения использования ИИ в синтетической химии большой интерес вызывает реализованный в программе DOGS подход, позволяющий для заданного биологически активного соединения найти структуры его аналогов вместе с путями их синтеза с использованием набора легко осуществимых органических реакций и каталога доступных реагентов для синтеза. Особый интерес представляет также разработанная в его группе платформа ALOE, предназначенная для автоматической оптимизации соединения-лидера (при разработке лекарственных препаратов) с использованием технологии микропроточного синтеза с помощью чипов под управлением программных средств на основе методов машинного обучения.

3. К. Фунатсу (K. Funatsu, Токио, Япония). Под его руководством разработана экспертная система планирования органического синтеза KOSP, основанная на правилах, автоматически извлекаемых из базы данных по реакциям. На этих же правилах основана и система SOPHIA для предсказания продуктов химических реакций.

4. Б. Гжибовски (B.A. Grzybowski, Эванстон (Иллинойс), США и Варшава, Польша). Основной продукт – Chematica. Это планировщик и оптимизатор синтеза, основанный на «сети органической химии», представляющей собой «граф знаний», включающий в качестве вершин 10 миллионов химических соединений и 10 миллионов связывающих их реакций.

5. П. Бальди (P. Baldi, Ирвайн (Калифорния), США). Интересные разработки: Reaction Explorer (основанная на правилах экспертная система для прогнозирования продуктов органических химических реакций) и Reaction Predictor (нейросетевая система, предназначенная для прогнозирования продуктов реакций с учетом их механизмов)

6. У. Грин и К. Дженсен (W.H. Green, K.F. Jensen, Кэмбридж (Массачусетс), США) Разработана универсальная система прогнозирования продуктов реакций органических соединений, сочетающая использование реакционных правил с нейросетевым моделированием с помощью глубокого обучения.

7. М. Уоллер (M.P. Waller, Мюнстер, Германия и Шанхай, Китай) Разработана основанная на «нейросимвольном» (neurosymbolic) подходе универсальная система планирования органического синтеза и прогнозирования продуктов реакций органических соединений, сочетающая использование автоматически извлекаемых реакционных правил с нейросетевым моделированием с помощью глубокого обучения.

8. А. Варнек (A. Varnek, Страсбург, Франция) Одна из наиболее активных групп в области хемоинформатики. Разработана концепция «конденсированного графа реакции», позволившая осуществлять поиск по сходству в базах данных по реакциям, применять алгоритмы машинного обучения к данным по реакциям, прогнозировать оптимальные условия осуществления синтеза, строить карты химического пространства реакций.

9. Т.М. Маджидов (Казань, Российская Федерация) В настоящее время это единственная в Российской Федерации активно работающая группа, осуществляющая исследования в области информатики синтетических реакций в органической химии. В ее рамках осуществлено прогнозирование кинетических и термодинамических характеристик химических реакций, создана экспертная система по защитным группам в органическом синтезе, осуществлено картирование пространств химических реакций. Большинство работ осуществляется в тесном сотрудничестве с лабораторией хемоинформатики Страсбургского университета (А. Варнек).

Последнее десятилетие активно обсуждается прогресс, достигнутый в области предсказания кристаллических структур веществ - направлении, которое долгое время считалось едва ли не безнадёжным. При помощи эволюционного алгоритма USPEX Оганова-Гласса удалось открыть множество новых стабильных химических соединений, ранее обойдённых вниманием химиков. Как вы считаете - каковы перспективы эволюционного подхода в области синтеза сложных органических молекул? Стоит ли на ваш взгляд ждать в ближайшее десять лет успехов в этом направлении?

Эволюционный подход (главным образом, генетический алгоритм) активно используется в хемоинформатике уже более 25 лет и считается традиционным методом стохастической оптимизации. На нем основано большинство известных алгоритмов молекулярного докинга – процесса «стыковки» молекулы органического соединения (например, потенциального лекарства) в полость «биологической мишени» (обычно белка).

Генетический алгоритм также очень часто используют для отбора дескрипторов и поиска оптимальных значений параметров методов машинного обучения при построении моделей для прогнозирования свойств химических веществ. Мы также часто используем генетический алгоритм при построении карт пространств химических соединений и реакций.

Но для решения непосредственно задачи планирования синтеза генетический алгоритм обычно не используется. Судя по всему, для этой задачи более эффективны различные модификации метода Монте Карло. Что касается ближайших десяти лет, то я ожидаю появления более эффективных в вычислительном плане методов стохастической оптимизации.

Также в последние годы в области машинного обучения наблюдается заметный тренд на развитие техник обучения без учителя (unsupervised learning) - направления весьма привлекательного в силу того, что себестоимость разметки массивов при участии людей остаётся примерно постоянной величиной, а вычислительные мощности постоянно растут и дешевеют. Появление автоэнкодеров открыло дорогу появлению техник эмбеддинга (embedding), работы Йошуа Беньо и Томаса Миколова совершили революцию в области обработки нейронными сетями естественного языка за счёт создания семантических векторных пространств (технологии word2vec, GloVe и т.п.). Применение этого подхода представляется весьма перспективным и в области биоинформатики - последовательности нуклеотидов ДНК, эпигеном, транскриптом - весьма напонимают по своей структуре тексты. Есть ли успехи в применении этих технологий в биоинформатике? Связываете ли вы с ними надежды на заметный прогресс в области анализа биологических данных?

Про биоинформатику ничего не скажу, так как работаю в области хемоинформатики, а это не одно и то же. Что касается применения алгоритмов обработки текстов с помощью рекуррентных нейронных сетей типа LSTM, приводящих к созданию семантических векторных пространств, то они в хемоинформатике очень интенсивно используются. Более того, они для хемоинформатики даже лучше подходят, чем для биоинформатики.

Дело в том, что химическую структуру тоже легко записать в виде строки – для этой цели используют кодировку SMILES. В этом случае формируемое латентное пространство очень хорошо подходит для представления выборок химических соединений для их использования для построения моделей «структура-свойство». Более того, при запуске обученных таким образом рекуррентных нейронных сетей в режиме генерации формируются структуры новых химических соединений. Это позволяет, например, решать задачу дизайна молекул новых лекарственных препаратов.

Что касается автоэнкодеров, то еще в 2011 г. мы разработали на их основе и опубликовали новый метод осуществления виртуального скрининга библиотек (баз данных) химических соединений с целью поиска перспективных молекул для разработки новых лекарственных препаратов.

Что касается методов обучения без учителя (unsupervised learning), то в хемоинформатике они интенсивно используются уже более 30 лет. В 80-ых годах и начале 90-ых наибольшей популярностью пользовался классический (разработанный еще в 30-ых годах прошлого века!) линейный метод главных компонент (PCA), начиная с середины 90-ых и до конца 2000-ых несомненным лидером по популярности в области хемоинформатики были само-организующиеся нейронные сети Кохонена, тогда как в последние годы все большую популярность в хемоинформатике получает построенный на базе Байесовского обучения вероятностный аналог сетей Кохонена – генеративные топографические отображения (GTM – Generative Topographic Mapping). Варианты последнего метода очень хорошо подходят для работы с большими базами химических объектов, в том числе реакций органического синтеза. Из других методов обучения без учителя для решения разных задач в области хемоинформатики мы также используем одноклассовый вариант машины опорных векторов (1-SVM), а также особый класс «основанных на энергии» нейронных сетей с симметричными связями, таких как сети Хопфилда и ограниченная машина Больцмана (RBM – Restricted Boltzmann Machine).

Каково видится будущее использования ИИ в синтетической химии? Как быстро ИИ отберет работу у химиков?

Я вижу в будущем несколько направлений использования ИИ в синтетической химии, которые частично реализуются уже и в настоящее время. Например, методы ИИ для обработки текстов и распознавания изображений уже сейчас активно используются для извлечения из литературы и других источников информации о методах синтеза химических веществ, об их свойствах и реакционной способности. Это уже сейчас позволяет существенно сократить затраты по найму большого количества квалифицированных химиков (обычно низкооплачиваемых из стран «третьего мира»), которые извлекают из гигантского объема опубликованной литературы информацию для пополнения баз данных.

При таком «ручном» способе пополнения значительная часть потенциально полезной информации оказывается «потерянной». Методы ИИ также начинают применяться для автоматической обработки и анализа уже собранной в базах данных информации, поиска ошибок, их исправления, а также автоматического пополнения отсутствующих сведений, что позволяет значительно повысить ценность такой информации для химиков-синтетиков.

Следует отметить, что в этом направлении лидирующие позиции занимает лаборатория хемоинформатики из Казанского федерального университета. Химики-синтетику уже сейчас начинают использоваться в своей работе в качестве рабочих журналов «электронные записные книжки» (electronic notebooks), которые в будущем будут насыщены средствами ИИ и станут основные средством сбора химической информации.

В будущем ИИ возьмет на себя функцию регулярного просмотра и анализа огромного объема публикуемой литературы по химическому синтезу и свойствам химических веществ, что в настоящее время занимает значительное время у всех химиков и с чем они уже плохо справляются. В будущем появятся у химиков появятся «интеллектуальные помощники», которые смогут ответить на любые возникающие в работе вопросы, например, как оптимальным образом синтезировать химические вещества, какие вещества вообще надо синтезировать для заданной цели. Уже сейчас происходит интеграция средств ИИ из областей синтетической химии, фармакологии, биоинформатики, науки о материалах, а также робототехники. Это приведет в будущем к тому, ИИ будет не только планировать, но и проводить рутинный химический синтез, что значительно повысит эффективность разработки новых лекарственных препаратов и новых материалов. Думаю, что немного в более отдаленном будущем ИИ станет основным средством в планировании и проведении научных исследований в области химии. Современное развитие хемоинформатики направлено именно на это.

Сейчас многие, включая рад выдающихся ученых, видят большую опасность в широком внедрении ИИ, который может отнять рабочие места у людей и, возможно, даже сделают существования человечества ненужным. Все сразу вспоминают при этом фильм «Терминатор». Такая опасность, конечно же существует, но подобные опасности возникали и при внедрении машин и информационных технологий. Думаю, что развитие ИИ приведет в большей степени к появлению дополнительных специальностей и рабочих мест, чем к ликвидации старых. В области синтетической химии ИИ избавит людей от рутинной работы, занимающей большую часть времени, и сделает работу химиков значительно более творческой и продуктивной. ИИ скорее будет помогать в развитии и эффективном использовании возможностей человека, чем будет представлять для него угрозу.

Вопросы задавали Миша Батин и Сережа Марков.

Среди важнейших классов задач, которые ставились перед разработчиками интеллектуальных систем с момента определения искусственного интеллекта как научного направления (с середины 50-х годов ХХ века), следует выделить следующие направления искусственного интеллекта , которые решают задачи, что плохо поддаются формализации: доказательство теорем, распознавания изображений, машинный перевод и понимание человеческой речи, игровые программы, машинная творчество, экспертные системы. Кратко рассмотрим их сущность.

Направления искусственного интеллекта

Доказательство теорем . Изучение приемов доказательства теорем сыграло важную роль в развитии искусственного интеллекта. Много неформальных задач, например, медицинская диагностика, применяют при решении методические подходы, которые использовались при автоматизации доказательства теорем. Поиск доказательства математической теоремы требует не только провести дедукцию, исходя из гипотез, но также создать интуитивные предположения о том, какие промежуточные утверждение следует доказать для общего доказательства основной теоремы. Распознавание изображений . Применение искусственного интеллекта для распознавании образов позволила создавать практически работающие системы идентификации графических объектов на основе аналогичных признаков. В качестве признаков могут рассматриваться любые характеристики объектов, подлежащих распознаванию. Признаки должны быть инвариантны к ориентации, размера и формы объектов. Алфавит признаков формируется разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно сложившийся алфавит признаков. Распознавания состоит в априорном получении вектора признаков для выделенного на изображении отдельного объекта и, затем, в определении которой из эталонов алфавита признаков этот вектор отвечает. Машинный перевод и понимание человеческой речи . Задача анализа предложений человеческой речи с применением словаря является типичной задачей систем искусственного интеллекта. Для ее решения был создан язык-посредник, облегчающий сопоставление фраз из разных языков. В дальнейшем этот язык-посредник превратилась в семантическую модель представления значений текстов, подлежащих переводу. Эволюция семантической модели привела к созданию языка для внутреннего представления знаний. В результате, современные системы осуществляют анализ текстов и фраз в четыре основных этапа: морфологический анализ, синтаксический, семантический и прагматический анализ. Игровые программы . В основу большинства игровых программ положены несколько базовых идей искусственного интеллекта, таких как перебор вариантов и самообучения. Одна из наиболее интересных задач в сфере игровых программ, использующих методы искусственного интеллекта, заключается в обучении компьютера игры в шахматы. Она была основана еще на заре вычислительной техники, в конце 50-х годов. В шахматах существуют определенные уровни мастерства, степени качества игры, которые могут дать четкие критерии оценки интеллектуального роста системы. Поэтому компьютерными шахматами активно занимался ученые со всего мира, а результаты их достижений применяются в других интеллектуальных разработках, имеющих реальное практическое значение. В 1974 году впервые прошел чемпионат мира среди шахматных программ в рамках очередного конгресса IFIP (International Federation of Information Processing) в Стокгольме. Победителем этого соревнования стала шахматная программа «Каисса». Она была создана в Москве, в Институте проблем управления Академии наук СССР. Машинная творчество . К одной из областей применений искусственного интеллекта можно отнести программные системы, способные самостоятельно создавать музыку, стихи, рассказы, статьи, дипломы и даже диссертации. Сегодня существует целый класс музыкальных языков программирования (например, язык C-Sound). Для различных музыкальных задач было создано специальное программное обеспечение: системы обработки звука, синтеза звука, системы интерактивного композиции, программы алгоритмической композиции. Экспертные системы . Методы искусственного интеллекта нашли применение в создании автоматизированных консультирующих систем или экспертных систем. Первые экспертные системы были разработаны, как научно-исследовательские инструментальные средства в 1960-х годах прошлого столетия. Они были системами искусственного интеллекта, специально предназначенными для решения сложных задач в узкой предметной области, такой, например, как медицинская диагностика заболеваний. Классической целью этого направления изначально было создание системы искусственного интеллекта общего назначения, которая была бы способна решить любую проблему без конкретных знаний в предметной области. Ввиду ограниченности возможностей вычислительных ресурсов, эта задача оказалась слишком сложной для решения с приемлемым результатом. Коммерческое внедрение экспертных систем произошло в начале 1980-х годов, и с тех пор экспертные системы получили значительное распространение. Они используются в бизнесе, науке, технике, на производстве, а также во многих других сферах, где существует вполне определенная предметная область. Основное значение выражения «вполне определенное», заключается в том, что эксперт-человек способен определить этапы рассуждений, с помощью которых может быть решена любая задача по данной предметной области. Это означает, что аналогичные действия могут быть выполнены компьютерной программой. Теперь с уверенностью можно сказать, что использование систем искусственного интеллекта открывает широкие границы. Сегодня, экспертные системы являются одним из самых успешных применений технологии искусственного интеллекта. Поэтому рекомендуем Вам ознакомится с

Какие возможности предоставляет искусственный интеллект в наши дни? Краткий ответ на этот вопрос сформулировать сложно, поскольку в этом научном направлении существует слишком много подобластей, в которых выполняется очень много исследований. Ниже приведен краткий обзор современных разработок с применением технологий искусственного интеллекта.

Автономное планирование и составление расписаний . Работающая на удалении в сотни миллионов километров от Земли программа Remote Agent агентства NASA стала первой бортовой автономной программой планирования, предназначенной для управления процессами составления расписания операций для космического аппарата. Программа Remote Agent вырабатывала планы на основе целей высокого уровня, задаваемых с Земли, а также контролировала работу космического аппарата в ходе выполнения планов: обнаруживала, диагностировала и устраняла неполадки по мере их возникновения.

Ведение игр . Программа Deep Blue компании IBM стала первой компьютерной программой, которой удалось победить чемпиона мира в шахматном матче, после того как она обыграла Гарри Каспарова со счетом 3.5:2.5 в показательном матче. Каспаров заявил, что ощущал напротив себя за шахматной доской присутствие «интеллекта нового типа». Журнал Newsweek описал этот матч под заголовком «Последний оборонительный рубеж мозга». Стоимость акций IBM выросла на 18 миллиардов долларов.

Автономное управление . Система компьютерного зрения Alvinn была обучена вождению автомобиля, придерживаясь определенной полосы движения. В университете CMU эта система была размещена в микроавтобусе, управляемом компьютером NavLab, и использовалось для проезда по Соединенным Штатам; на протяжении 4586.6 км система обеспечивала рулевое управление автомобилем в течение 98% времени. Человек брал на себя управление лишь в течение остальных 2%, главным образом на выездных пандусах. Компьютер NavLab был оборудован видеокамерами, которые передавали изображения дороги в систему Alvinn, а затем эта система вычисляла наилучшее направление движения, основываясь на опыте, полученном в предыдущих учебных пробегах.

Диагностика . Медицинские диагностические программы, основанные на вероятностном анализе, сумели достичь уровня опытного врача в нескольких областях медицины. Хекерман описал случай, когда ведущий специалист в области патологии лимфатических узлов не согласился с диагнозом программы в особо сложном случае. Создатели программы предложили, чтобы этот врач запросил у компьютера пояснения по поводу данного диагноза. Машина указала основные факторы, повлиявшие на ее решение, и объяснила нюансы взаимодействия нескольких симптомов, наблюдавшихся в данном случае. В конечном итоге эксперт согласился с решением программы.

Планирование снабжения . Во время кризиса в Персидском заливе в 1991 году в армии США была развернута система DART (Dynamic Analysis and Replanning) для обеспечения автоматизированного планирования поставок и составления графиков перевозок. Работа этой системы охватывала одновременно до 50 000 автомобилей, единиц груза и людей; в ней приходилось учитывать пункты отправления и назначения, маршруты, а также устранять конфликты между всеми параметрами. Методы планирования на основе искусственного интеллекта позволяли вырабатывать в течение считанных часов такие планы, для составления которых старыми методами потребовались бы недели. Представители агентства DARPA (Defense Advanced Research Project Agency – Управление перспективных исследовательских программ) заявили, что одно лишь это приложение сторицей окупило тридцатилетние инвестиции в искусственный интеллект, сделанные этим агентством.

Робототехника . Многие хирурги теперь используют роботов-ассистентов в микрохирургии. Например, HipNav – это система, в которой используются методы компьютерного зрения для создания трехмерной модели анатомии внутренних органов пациента, а затем применяется робототехническое управление для руководства процессом вставки протеза, заменяющего тазобедренный сустав.

Понимание естественного языка и решение задач . Программа Proverb – это компьютерная программа, которая решает кроссворды намного лучше, чем большинство людей; в ней используются ограничения, определяющие состав возможных заполнителей слов, большая база с данными о встречавшихся ранее кроссвордах, а также множество различных источников информации, включая словари и оперативные базы данных, таких как списки кинофильмов и актеров, которые играли в этих фильмах. Например, эта программа способна определить, что одним из решений, подходящих для ключа «Nice Story», является слово «ETAGE», поскольку ее база данных содержит пару ключ-решение «Story in France/ETAGE», а сама программа распознает, что шаблоны «Nice X» и «X in France» часто имеют одно и то же решение. Программа не знает, что Nice (Ницца) – город во Франции, но способна разгадать эту головоломку.

Выше приведено лишь несколько примеров систем искусственного интеллекта, которые существуют в настоящее время. Искусственный интеллект – это не магия и не научная фантастика, а сплав методов науки, техники и математики.

Искусственный интеллект (ИИ, англ. Artificial intelligence, AI) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Что такое искусственный интеллект

Интеллект (от лат. intellectus - ощущение, восприятие, разумение, понимание, понятие, рассудок), или ум - качество психики, состоящее из способности приспосабливаться к новым ситуациям, способности к обучению и запоминанию на основе опыта, пониманию и применению абстрактных концепций и использованию своих знаний для управления окружающей средой. Интеллект - это общая способность к познанию и решению трудностей, которая объединяет все познавательные способности человека: ощущение, восприятие, память, представление, мышление, воображение.

В начале 1980-х гг. ученые в области теории вычислений Барр и Файгенбаум предложили следующее определение искусственного интеллекта (ИИ):


Позже к ИИ стали относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек.

Основные свойства ИИ - это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

ИИ – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:

  • обработка текста на естественном языке
  • экспертные системы
  • виртуальные агенты (чат-боты и виртуальные помощники)
  • системы рекомендаций.

Национальная стратегия развития искусственного интеллекта

  • Основная статья: Национальная стратегия развития искусственного интеллекта

Исследования в сфере ИИ

  • Основная статья: Исследования в сфере искусственного интеллекта

Стандартизация в области ИИ

2019: Эксперты ISO/IEC поддержали предложение о разработке стандарта на русском языке

16 апреля 2019 года стало известно, что подкомитет ISO /IEC по стандартизации в области искусственного интеллекта поддержал предложение Технического комитета «Кибер-физические системы », созданного на базе РВК , о разработке стандарта «Artificial intelligence. Concepts and terminology» на русском языке в дополнение к базовой английской версии.

Терминологический стандарт «Artificial intelligence. Concepts and terminology» является основополагающим для всего семейства международных нормативно-технических документов в области искусственного интеллекта. Кроме терминов и определений, данный документ содержит концептуальные подходы и принципы построения систем с элементами , описание взаимосвязи AI с другими сквозными технологиями, а также базовые принципы и рамочные подходы к нормативно-техническому регулированию искусственного интеллекта.

По итогам заседания профильного подкомитета ISO/IEC в Дублине эксперты ISO/IEC поддержали предложение делегации из России о синхронной разработке терминологического стандарта в сфере AI не только на английском, но и на русском языке. Ожидается, что документ будет утвержден в начале 2021 года.

Развитие продуктов и услуг на базе искусственного интеллекта требует однозначной трактовки используемых понятий всеми участниками рынка. Стандарт терминологии позволит унифицировать «язык», на котором общаются разработчики, заказчики и профессиональное сообщество, классифицировать такие свойства продуктов на базе ИИ, как «безопасность», «воспроизводимость», «достоверность» и «конфиденциальность». Единая терминология также станет важным фактором для развития технологий искусственного интеллекта в рамках Национальной технологической инициативы – алгоритмы ИИ используют более 80% компаний в периметре НТИ. Кроме того, решение ISO/IEC позволит укрепить авторитет и расширить влияние российских экспертов при дальнейшей разработке международных стандартов.

В ходе заседания эксперты ISO/IEC также поддержали разработку проекта международного документа Information Technology - Artificial Intelligence (AI) - Overview of Computational Approaches for AI Systems, в котором Россия выступает в качестве соредактора. Документ предоставляет обзор современного состояния систем искусственного интеллекта, описывая основные характеристики систем, алгоритмы и подходы, а также примеры специализированных приложений в области AI. Разработкой этого проекта документа займется специально созданная в рамках подкомитета рабочая группа 5 «Вычислительные подходы и вычислительные характеристики систем Искусственного интеллекта» (SC 42 Working Group 5 «Computational approaches and computational characteristics of AI systems»).

В рамках работы на международном уровне делегации из России удалось добиться ряда знаковых решений, которые будут иметь долгосрочный эффект для развития в стране технологий искусственного интеллекта. Разработка русскоязычной версии стандарта, еще и со столь ранней фазы – гарантия синхронизации с международным полем, а развитие подкомитета ISO/IEC и инициация международных документов с российским соредакторством – это фундамент для дальнейшего продвижения интересов российских разработчиков за рубежом», - прокомментировал.

Технологии искусственного интеллекта широко востребованы в самых разных отраслях цифровой экономики . Среди основных факторов, сдерживающих их полномасштабное практическое использование, - неразвитость нормативной базы. При этом именно проработанная нормативно-техническая база обеспечивает заданное качество применения технологии и соответствующий экономический эффект.

По направлению искусственный интеллект ТК «Кибер-физические системы» на базе РВК ведет разработку ряда национальных стандартов, утверждение которых запланировано на конец 2019 – начало 2020 года. Кроме того, совместно с рыночными игроками идет работа по формированию Плана национальной стандартизации (ПНС) на 2020 год и далее. ТК «Кибер-физические системы» открыт для предложений по разработке документов со стороны заинтересованных организаций.

2018: Разработка стандартов в области квантовых коммуникаций, ИИ и умного города

Технический комитет «Кибер-физические системы» на базе РВК совместно с Региональным инжиниринговым центром «СэйфНет» 6 декабря 2018 года начали разработку комплекса стандартов для рынков Национальной технологической инициативы (НТИ) и цифровой экономики . К марту 2019 года планируется разработать документы технической стандартизации в области квантовых коммуникаций , и , сообщили в РВК. Подробнее .

Влияние искусственного интеллекта

Риск для развития человеческой цивилизации

Влияние на экономику и бизнес

  • Влияние технологий искусственного интеллекта на экономику и бизнес

Влияние на рынок труда

Предвзятость искусственного интеллекта

В основе всего того, что является практикой ИИ (машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое) лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Поэтому заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Подробнее .

Рынок технологий искусственного интеллекта

Рынок ИИ в России

Мировой рынок ИИ

Сферы применения ИИ

Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.

ИИ - это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.

Развитие применения использования ИИ ведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.

Использование ИИ в целях обороны и в военном деле

Использование в образовании

Использование ИИ в бизнесе

ИИ в борьбе с мошенничеством

11 июля 2019 года стало известно о том, что всего через два года искусственный интеллект и машинное обучение будут использоваться для противодействия мошенничеству в три раза чаще, чем на июль 2019 года. Такие данные были получены в ходе совместного исследования компании SAS и Ассоциации сертифицированных специалистов по расследованию хищений и мошенничества (Association of Certified Fraud Examiners, ACFE). На июль 2019 года такие антифрод -инструменты уже используют в 13% организаций, принявших участие в опросе, и в еще 25% заявили, что планируют их внедрить в течение ближайшего года-двух. Подробнее .

ИИ в электроэнергетики

  • На уровне проектирования: улучшенное прогнозирование генерации и спроса на энергоресурсы, оценка надежности энергогенерирующего оборудования, автоматизация повышения генерации при скачке спроса.
  • На уровне производства: оптимизация профилактического обслуживания оборудования, повышение эффективности генерации, снижение потерь, предотвращение краж энергоресурсов.
  • На уровне продвижения: оптимизация ценообразования в зависимости от времени дня и динамическая тарификация.
  • На уровне предоставления обслуживания: автоматический выбор наиболее выгодного поставщика, подробная статистика потребления, автоматизированное обслуживание клиентов, оптимизация энергопотребления с учетом привычек и поведения клиента.

ИИ в производственной сфере

  • На уровне проектирования: повышение эффективности разработки новых продуктов, автоматизированная оценка поставщиков и анализ требований к запчастям и деталям.
  • На уровне производства: совершенствование процесса исполнения задач, автоматизация сборочных линий, снижение количества ошибок, уменьшение сроков доставки сырья.
  • На уровне продвижения: прогнозирование объемов предоставления услуг поддержки и обслуживания, управление ценообразованием.
  • На уровне предоставления обслуживания: улучшение планирования маршрутов парка транспортных средств, спроса на ресурсы автопарка, повышение качества подготовки сервисных инженеров.

ИИ в банках

  • Распознавание образов - используется в т.ч. для узнавания клиентов в отделениях и передачи им специализированных предложений.

ИИ на транспорте

  • Автоиндустрия на пороге революции: 5 вызовов эры беспилотного вождения

ИИ в логистике

ИИ в пивоварении

ИИ в судебной системе

Разработки в области искусственного интеллекта помогут кардинально изменить судебную систему, сделать ее более справедливой и свободной от коррупционных схем. Такое мнение высказал летом 2017 года доктор технических наук, технический консультант Artezio Владимир Крылов.

Ученый считает, что уже существующие сейчас решения в области AI можно успешно применять в разных сферах экономики и общественной жизни. Эксперт указывает, что AI успешно применяется в медицине, однако в будущем способен полностью изменить и судебную систему.

«Ежедневно просматривая новостные сообщения о разработках в области ИИ только поражаешься неисчерпаемости фантазии и плодотворности исследователей и разработчиков в этой области. Сообщения о научных исследований постоянно чередуются с публикациями о новых продуктах, врывающихся на рынок и сообщениями об удивительных результатах, полученных с помощью применения ИИ в различных областях. Если же говорить об ожидаемых событиях, сопровождаемых заметным хайпом в СМИ, в котором ИИ станет снова героем новостей, то я, наверное, не рискну делать технологических прогнозов. Могу предположить, что ближайшим событием станет появление где-то предельно компетентного суда в форме искусственного интеллекта, справедливого и неподкупного. Случится это, видимо, в 2020-2025 году. И процессы, которые пройдут в этом суде приведут к неожиданным рефлексиям и стремлению многих людей передать ИИ большинство процессов управления человеческим обществом».

Использование искусственного интеллекта в судебной системе ученый признает «логичным шагом» по развитию законодательного равенства и справедливости. Машинный разум не подвержен коррупции и эмоциям, может четко придерживаться законодательных рамок и выносить решения с учетом многих факторов, включая данные, которые характеризуют участников спора. По аналогии с медицинской сферой, роботы -судьи могут оперировать большими данными из хранилищ государственных служб. Можно предположить, что

Музыка

Живопись

В 2015 году команда Google тестировала нейронные сети на предмет возможности самостоятельно создавать изображения. Тогда искусственный интеллект обучали на примере большого количества различных картинок. Однако, когда машину «попросили» самостоятельно что-нибудь изобразить, то оказалось, что она интерпретирует окружающий нас мир несколько странно. Например, на задачу нарисовать гантели, разработчики получили изображение, в котором металл был соединён человеческими руками. Вероятно, произошло это из-за того, что на этапе обучения анализируемые картинки с гантелями содержали руки, и нейронная сеть неверно это интерпретировала.

26 февраля 2016 года в Сан-Франциско на специальном аукционе представители Google выручили с психоделических картин, написанных искусственным интеллектом, порядка $98 тыс. Данные средства были пожертвованы на благотворительность. Одна из наиболее удачных картин машины представлена ниже.

Картина, написанная искусственным интеллектом Google.

Искусственный интеллект — это то, что способно поработить мир и лишить нас рабочих мест. С другой стороны, он же способен существенно упростить нашу жизнь. нейронные сети и ИИ — тема, набирающая все большую популярность. И неудивительно. Сам факт, что существует объект, значительно умнее человека, уже вызывает бурю эмоций разной гаммы. Сегодня мы рассмотрим все, что вас интересовало об искусственном интеллекте: что это такое, как его использовать обычному человеку, о том, как он разрабатывается.

Сегодня посмотрел видеоролик на ютубе про то, что скоро машины не будут нуждаться в водителях. Уже сейчас разработаны модели, которые довольно неплохо определяют объекты, в которые ни за что не стоит врезаться. Единственное, что не умеют делать эти автомобили — парковаться. Для этого все еще требуется человек. Но ведь это такая мелочь. Поставить одного парковщика, и пусть он этим делом занимается.

А так система очень умная. Боюсь представить, как будет в будущем: сказал машине “едь в ресторан”, и она поехала. Даже если ты не знаешь, в каком районе он находится, все равно ты окажешься там, где нужно. Это шикарно.

Общая информация об искусственном интеллекте

Искусственный интеллект основан на нейросетях — математической модели человеческого нейрона. Чтобы рассмотреть подробно принцип его работы, нужно немного проникнуть в анатомию ЦНС. Каждая наша клетка состоит из аксонов и дендритов. Первые соединяются со вторыми с помощью синапсов. Нейрон активируется, если был преодолен определенный порог возбуждения (то есть, если напряжение на него подается чуть больше, чем определенное значение). Как следствие, возникает сигнал, который передается на следующий нейрон, и так далее.

Дендриты — это входной порт информации, если можно так выразиться. Предположим, вы смотрите видео. Информация поступает на нейрон, там обрабатывается и выходит на другой при условии, что был преодолен порог возбуждения через аксон. Это очень упрощенная модель, которую легко понять. На деле все значительно сложнее, но к теме не относится.

Нейросеть — это такая модель, которая позволяет принять самое верное решение, исходя из определенных условий.

Описание искусственного нейрона

Опишем искусственный интеллект, как он работает, более детально. В искусственном нейроне ситуация примерно аналогичная. Там есть входной слой и выходной слой. Есть непосредственно тело нейрона, которое называется сумматором, задача которого — проверить, преодолен ли порог возбуждения и выдать сигнал на следующий искусственный нейрон в случае, если это условие истинное.

На входной слой поступают признаки, которые подвергаются анализу. Представим, что мы хотим создать программу, решающую, стоит ли подписываться на какого-то стендапера. Предположим, что для этого нам требуется:

  1. Чувство юмора. Понятно, что стендапер без этого качества не котируется.
  2. Интеллект. Хотелось бы, чтобы он еще на мысли какие-то наталкивал.

Эти признаки подаются на сумматор. Порог возбуждения нейрона на языке нейросетей называется функцией активации. Если он был преодолен, то идет сигнал на выходной слой. Это и есть решение. Мы можем с помощью весовых коэффициентов определить уровень важности каждого признака. Это делается для того, чтобы настроить искусственный интеллект под задачи конкретного пользователя. Предположим, нам более важно испытать эффект “а ведь он прав”. То есть, интеллект стендапера имеет больший весовой коэффицент, чем чувство юмора.


Если эту систему не вводить, то решение о том, подписываться или нет, будет приниматься исключительно если стендапер шутит так, что дом трясется от вибраций, вызванных хохотом слушателя, а также если благодаря ролику была изобретена идея, как освоить космос, не вставая с дивана.

Как это работает на практике? Создается взвешенное значение путем умножения показателя на весовой коэффициент. Например, если для нас более важен интеллект, то этому признаку присваивается коэффициент 0,6, а на юмор — 0,4. Видим, что в сумме все равно должна получиться единица. В конечном итоге, компьютер видит только два возможных значения или 0, или 1.

Входные данные в компьютере поступают только в виде чисел. Предположим, интеллект будет измеряться в единицах IQ, а юмор — по собственной шкале программиста. В таком случае еще нужно провести нормализацию входных данных, чтобы они были выражены в одной шкале. Не будем вдаваться в детали, потому что нам нужно лишь общее представление о том, что такое искусственный интеллект. Дальше нейросеть нужно обучить. Делается это с помощью подбора коэффициентов. То есть, нужно подобрать такие коэффициенты, чтобы получать необходимый результат.

Области применения искусственного интеллекта

Сфера применения искусственного интеллекта очень широка, и его можно использовать везде, где только человек может представить. Вот некоторые области, в которых он уже успешно используется.

  1. Медицина. Преимущество искусственного интеллекта в этой сфере — способность запоминать и обрабатывать колоссальное количество информации, благодаря чему уже появились не только приложения, дающие рекомендации врачам, но и программы, способные на ранних стадиях обнаружить заболевания, когда симптомы еще не успели проявиться. Например приложение Face2Gene сканирует лицо и способно определить 3500 различных генетических заболеваний.
  2. Промышленность и сельское хозяйство. В этих сферах искусственный интеллект развился до такой степени, что скоро человек будет вовсе ненужным. Так, компания LG в 2023 году откроет завод, где абсолютно все этапы будут выполняться искусственным интеллектом, начиная закупкой товара и выгрузкой готовой продукции. И да, контроль за качеством также будет осуществлять соответствующее программное обеспечение. А уже 2021 году произойдет частичный переход заводов на эту технологию. В сельской промышленности искусственный интеллект следит за состоянием растений, уровнем влажности, количеством питательных веществ в почве. Более того, он способен обнаруживать сорняки и выдергивать их без вреда для растений.
  3. Дорожное движение. Уже сейчас искусственный интеллект используется для того, чтобы предотвращать пробки. Для этого он в режиме реального времени собирает информацию со светофоров, анализирует расстояние между машинами, имеющиеся аварии и анализирует ее для улучшения дорожно-транспортной ситуации. Подобные системы реализованы уже во многих странах. Еще одно направление ИИ в этой области — машины с автопилотом, как это описывалось в примере выше.
  4. Умный дом. Да, искусственный интеллект уже может применяться в быту человека. Например, он может утром разбудить вас и раздвинуть занавески, чтобы в комнате оказался солнечный свет. Когда вы проснетесь, у вас уже будет чашка ароматного кофе, сваренная как раз к моменту вашего пробуждения. Холодильник в ближайшем будущем сам научится заказывать еду, а как только вы закроете дверь по выходу на работу, сразу включится сигнализация. Также есть возможность в ближайшее время почувствовать все удобство умных батарей, которые адаптируют температуру под человека. Очень удобно.
  5. И наконец, последний элемент нашего списка — умные переводчики. Там искусственный интеллект дошел до того уровня, что нередко они свои функции выполняют не хуже человека. Есть случаи, когда студент перевел реферат с иностранного языка на свой, распечатал и сдал в неизменном виде и получил 5. Конечно, лучше пока не экспериментировать таким образом. Да и знаний не будет, для чего и ходит человек в университет.


Перспектива развития искусственного интеллекта

Есть несколько сценариев развития искусственного интеллекта. Первый — пессимистический. Рано или поздно интеллект ИИ будет настолько совершенным, что его нельзя будет ни обмануть, ни взломать. Зато он может быть настроен агрессивно против человека. Как только у бездушной машины появится самосознание, она фактически превратится в человека, только гораздо более умелого. И если, не дай Бог, каким-то образом вступить в конфликт с этим устройством, то последствия будут очень печальными.

Второй сценарий — оптимистический, но не факт, что он не закончится плохо. Машины будут делать за человека все. И даже если это произойдет, будет приблизительно что-то типа мультика “Wall-E”, где люди превратились просто в большие куски жира, которые не могут даже с кресла встать самостоятельно. Если они падают, их какой-то робот возвращает на место.

Третий сценарий тоже пессимистический. Человечество может решить создать машину, которая определяет и решает глобальные проблемы человечества. И вполне возможно, что проанализировав кучу переменных, робот решит, что виноват во всех своих бедах сам человек. И естественно, у него будет программа уничтожить причину, то есть, людей.

Четвертый сценарий — технологическая безработица, которая уже начинает потихоньку проявляться, причем не только в конвейерном производстве, но и во вполне “умных” профессиях. Так, в большинстве мировых банков осталось достаточно лишь пары трейдеров, а всю остальную работу по анализу рынка и даже заключению прибыльных сделок на куплю или продажу валюты или ценных бумаг выполняют роботы. Да, это происходит уже сейчас.

Наступит период, когда только те люди, которые обслуживают ИИ, то есть, программисты, будут востребованы. А затем последние будут ненужными, поскольку искусственный интеллект будет настолько хорошо самообучаться, что даже сам программист не будет знать, что происходит в его коде. Искусственный интеллект развивается полным ходом и, рано или поздно, один из этих сценариев вполне может наступить.

Возможностей у искусственного интеллекта очень много. Нам надо ответственно подходить к его созданию, чтобы они их не было такого большого количества, чтобы ИИ вышел из-под контроля. Как только становятся совместимыми понятия “искусственный интеллект” и “сознание”, то мы тогда не сможем управлять этой субстанцией. Минимум, что нужно делать — договариваться.


Отличие искусственного интеллекта от естественного

Искусственный интеллект и человек на деле очень разные. Объединяет их лишь способность думать, но и это осуществляется по-разному. И как же их сравнить? Лучшая идея — представить их в виде преимуществ искусственного интеллекта на фоне человеческого и недостатков, имеющихся на данный момент. Стоит учитывать, что со временем количество минусов будет все меньше и меньше. Преимущества ИИ:

  1. Способность мгновенно запоминать информацию и обрабатывать колоссальное ее количество в кратчайшие сроки. Для того, чтобы любое знание напрочь засело в голове человека и не забылось, необходимо повторять нужную информацию в течение 3-4 дней, а затем хотя бы раз в 1,5 месяца освежать его в памяти хоть в косвенной форме. Искусственный интеллект запомнит раз и навсегда.
  2. Невероятно быстрая обработка количественных данных. Пока человек сложит два двузначных числа, компьютер уже проанализирует экономическую ситуацию и выдаст точку на графике, в которой лучше всего покупать валюту. А потом и сам эту сделку заключит и вовремя выйдет из рынка, оставив с прибылью своего хозяина. Трейдеру обработать такое множество количественной информации не под силу.

Недостатки ИИ:

  1. Искусственный интеллект пока еще не умеет обрабатывать качественную информацию, но это лишь вопрос времени. Любая качественная информация может быть выражена в форме математической модели. Пример вы уже видели выше — искусственный нейрон, который может функционировать даже лучше полноценного. Это обычная математическая формула, которая была открыта еще в 40-х годах прошлого века. Но это открытие уже изменило мир.
  2. Искусственный интеллект все еще может давать сбои. Пока он не настолько совершенный, поэтому все равно нужен человек, который за ним будет “присматривать”. Но уже через несколько десятилетий ИИ может научиться видеть свои сбои, чинить их, и человек не понадобится. Недавно по новостям пробежались заголовки, что изобретено высокоточное оружие, которое будет само выбирать цель, находить самый благоприятный маршрут к ней, чтобы при этом остаться незамеченным. Если на это ружье поместить ядерную боеголовку, и оно вдруг даст ложный старт, то это может уничтожить все человечество. Вспомнить только ситуации во время Холодной Войны, когда электроника давала ложный сигнал о пуске ядерного снаряда, хотя это была лишь погодная аномалия. Если бы решение тогда принималось искусственным интеллектом, вы бы эту статью уже не читали.

Искусственный интеллект в реальной жизни

Искусственный интеллект только развивается и далеко не все его проявления доступны человеку уже сейчас. Но все равно есть примеров искусственного интеллекта, которыми может воспользоваться каждый:

  1. Различные развлекательные приложения, например с масками.
  2. FaceID в iPhone X и старше. Функция, позволяющая разблокировать смартфон лицом. Специальные самообучающиеся алгоритмы сканируют человека с разных сторон и создается уникальный слепок, который и позволяет идентифицировать человека.
  3. Искусственный интеллект в маркетинге. Если вам нужно что-то продать, то системы контекстной рекламы находят именно того человека, который в этом нуждается. Вы и сами могли замечать, что сайты уж сильно хорошо вас знают, что дают ту рекламу, которая вас может заинтересовать.
  4. Виртуальные ассистенты на смартфонах. Там все реализовано через ИИ, начиная распознаванием речи и заканчивая выдачей готового решения.
  5. Чат-боты на сайтах. Нередко это очень умные программы, которые могут извлекать нужную клиенту информацию прямо с сайта.
  6. Приложения дополненной реальности, которые могут, например, определить объект, на который вы навели камерой и предоставить подробную информацию по нему, начиная отзывами и заканчивая контактными данными.

И таких возможностей с каждым годом будет все больше.

Выводы

Один из главных возможных плюсов ИИ — это то, что человек потенциально способен повысить свой интеллект. Со временем нам придется конкурировать с бездушными машинами, возможности которых многократно превосходят наши. Поэтому нам не надо всецело им доверять, нужно и самим развиваться. Поскольку вы читаете этот сайт, то вы большой молодец. Здесь вы сможете прочитать множество материалов по саморазвитию и прокачать свою биологическую нейронную сеть.



просмотров