Светодиодные лампы постоянного или переменного тока. Дуговые лампы сверхвысокого давления. Лампы люминесцентные высокого давления

Светодиодные лампы постоянного или переменного тока. Дуговые лампы сверхвысокого давления. Лампы люминесцентные высокого давления

Снижение розничных цен на светодиодные лампы привело к резкому росту их продаж. Однако ситуация с выбором качественного товара для многих по-прежнему остаётся тупиковой. Если купить лампочку накаливания было просто, с появлением КЛЛ задача не значительно усложнилась за счет более широкого ассортимента и оттенков излучаемого света. Параметры светодиодных ламп имеют значительно больше пунктов, чем у лампочек предыдущих поколений.

Но не стоит пугаться. Чтобы купить хорошую светодиодную лампу, углублённых познаний товара не понадобится. Достаточно один раз разобраться с основными параметрами, чтобы потом легко ориентироваться среди чисел, указанных на упаковке. Так что же нужно знать покупателю о светодиодных лампах, и на какие технические характеристики обратить внимание перед покупкой?

Основные характеристики

Следуя пословице: «Встречают по одёжке…» достаточно взять в руки коробку с лампочкой, чтобы ознакомиться с её основными техническими характеристиками. Обратить внимание следует не на крупные яркие цифры, а на напечатанное мелким шрифтом описание из 10 и более позиций.

Световой поток

Во времена, когда лампа накаливания была источником света №1, понятие светового потока мало кого интересовало. Яркость свечения определялась номинальной мощностью лампочки. С появлением светодиодов мощность потребления источников света снизилась в разы, а КПД вырос. За счет этого появилась экономия, о которой так часто напоминают рекламные ролики.

Световой поток (Ф, лм или lm) – величина, которая указывает на количество световой энергии, отдаваемой осветительным прибором. Опираясь на значение светового потока можно легко подобрать замену существующей лампочке со спиралью. Для этого можно воспользоваться нижеприведенной таблицей соответствия. Наравне со световым потоком часто можно встретить понятие «световая отдача». Её определяют как отношение светового потока к потребляемой мощности и измеряют в лм/Вт. Данная характеристика более полно отражает эффективность источника излучения. Например, светодиодная лампа нейтрального света мощностью 10 Вт излучает световой поток примерно в 900-950 лм. Значит, её светоотдача будет равна 90-95 лм/Вт. Это примерно в 7,5 раз больше, чем у аналога со спиралью в 75 Вт с таким же световым потоком.

Бывает, что после замены лампы накаливания на светодиодную её яркость оказывается ниже заявленной. Первая причина такого явления – установка дешёвых китайских светодиодов. Вторая – заниженная мощность потребления. Эти обе причины говорят о товаре низкого качества.

Также величина светового потока зависит от цветовой температуры. В случае со светодиодами принято указывать световой поток для нейтрального света (4500°K). Чем выше цветовая температура, тем больше световой поток и наоборот. Разница в светоотдаче между однотипными светодиодными лампами теплого (2700°K) и холодного (5300°K) свечения может достигать 20%.

Мощность

Мощность потребления светодиодной лампы (P, Вт) – вторая по важности техническая характеристика, которая показывает на то, сколько электроэнергии потребляет светодиодная лампа за 1 час. Суммарное энергопотребление складывается из мощности светодиодов и мощности драйвера. Наиболее востребованы в наше время led осветительные приборы мощностью 5-13 Вт, что соответствует 40-100 ваттным лампам с нитью накала.

Качественные драйвера импульсного типа потребляют не более 10% энергии от общей мощности.

В качестве рекламы производители часто пользуются понятием «Эквивалентная мощность», которая выражается в надписи на упаковке наподобие 10 Вт=75 Вт. Это означает, что светодиодную лампу в 10 Вт можно вкрутить вместо обычной «груши» в 75 Вт, не потеряв при этом в яркости. Разнице в 7-8 раз можно верить. Но если на коробке красуется надпись вроде 6 Вт=60 Вт, то зачастую это не более чем рекламный трюк, рассчитанный на рядового покупателя. Это не значит, что изделие плохого качества, но реальная светоотдача будет, скорее всего, совпадать с лампой накаливания не в 60, а гораздо меньше.

Напряжение и частота питания

Напряжение питания (U, В) принято указывать на коробке в виде диапазона, в пределах которого производитель гарантирует нормальную работу изделия. Например, параметр 176–264В свидетельствует о том, что лампочка уверенно справится с любыми перепадами сетевого напряжения без существенной потери яркости.

Как правило, светодиодная лампа со встроенным токовым драйвером имеет широкий диапазон входных напряжений.

Если источник питания не содержит качественного стабилизатора, то перепады напряжения в сети питания будут сильно сказываться на светоотдаче и влиять на качество освещения. В России наибольшее распространение имеют led-лампы с питанием от сети переменного тока 230В частотой 50/60 Гц и от сети постоянного тока 12В.

Тип цоколя

Размер цоколя необходимо знать для того, чтобы подобрать лампочку в соответствии с существующим патроном в светильнике. Основная масса светодиодных ламп выпускается под резьбовой цоколь Е14 и Е27, которые являются стандартом для настенных, настольных и потолочных светильников советского образца. Не редкость светодиодные лампы с цоколем GU4, GU5.3, которые пришли на смену галогенным лампочкам, установленным в точечных светильниках и китайских люстрах с пультом дистанционного управления.

Цветовая температура

(TC, °K) указывает на оттенок излучаемого света. Применительно к светодиодным лампам белого свечения всю шкалу условно делят на три части: с тёплым, нейтральным и холодным светом. При выборе следует учесть, что тёплые тона (2700-3500°K) успокаивают и располагают к уюту, а холодные (от 5300°K) бодрят и возбуждают нервную систему.
В связи с этим для дома рекомендуется использовать тёплого свечения, а на кухне, в ванной и для работы – нейтрального. Светильники на светодиодах с TC≥5300°K пригодны только для выполнения специфической работы и в качестве аварийного освещения.

Угол рассеивания

По углу рассеивания можно судить о распространении светового потока в пространстве. Данный показатель зависит от конструкции рассеивателя и расположения светодиодов. Нормой для современных ламп широкого применения является значение ≥210°. Для эффективной работы с мелкими деталями лучше купить лампу с углом рассеивания 120° и установить её в настольный светильник.

Возможность диммирования

Возможность диммирования (управление яркостью освещения) светодиодной лампы подразумевает её корректную работу от светорегулятора (диммера). Диммируемые лампы стоят дороже, так как их электронный блок имеет более сложное устройство. Обычная led-лампочка при подключении к регулятору света не станет работать или будет моргать.

Коэффициент пульсации

(Кп) не всегда приводится в перечне характеристик, несмотря на то, что имеет первостепенное значение и оказывает влияние на здоровье. Необходимость в измерении данного параметра возникла ввиду наличия в лампе электронного блока и высокого отклика светодиодов. Низкокачественные источники питания не способны идеально сгладить пульсации выходного сигнала, в результате чего светодиоды начинают мерцать с некоторой частотой.

Коэффициент пульсации светодиодных ламп с питанием от сети стабильного постоянного тока равен нулю.

Наиболее качественными принято считать светодиодные лампы с Кп ниже 20%. В моделях с драйвером тока коэффициент пульсаций не превышает 1%. Определить данный параметр на практике несложно с помощью осциллографа. Для этого нужно измерить амплитуду переменной составляющей сигнала на светодиодах и разделить её на напряжение, измеренное на выходе блока питания.

По частоте переменного сигнала в нагрузке можно определить тип применённого драйвера.

Диапазон рабочих температур

Следует внимательно отнестись к данной характеристике, если предполагается эксплуатировать светодиодную лампочку в нестандартных условиях: на улице, в производственных цехах. Некоторые модели способны корректно работать только в узком диапазоне температур.

Индекс цветопередачи

С помощью индекса цветопередачи (CRI или Ra) можно оценить, насколько естественным виден цвет предметов, освещённых светодиодной лампой. Хорошим считается Ra≥70.

Степень защиты от влаги и пыли

Этот параметр выражается в виде обозначения IPXX, где ХХ – две цифры, указывающие на степень защиты от твёрдых предметов и воды. Его можно не обнаружить в перечне характеристик, если лампа предназначена исключительно для использования внутри помещений.

Дополнительные параметры

Срок службы изделия

Срок службы – весьма абстрактная характеристика светодиодной лампы. Дело в том, что под сроком службы производитель понимает общее время работы светодиодов, а не лампы. При этом наработка на отказ остальных деталей схемы остаётся под большим сомнением. Кроме того, на время работы влияет качество сборки корпуса и пайки радиоэлементов. К тому же не один производитель, в связи с долгим сроком службы, не проводит полноценных тестов по деградации светодиодов в лампе. Так что заявленные 30 тыс. часов и более – это теоретический показатель, а не реальный параметр.

Тип колбы

Несмотря на то что тип колбы для многих не является критичным техническим параметром, во многих моделях его указывают в первой строчке. Обычно тип и маркировка колбы выражается в цифробуквенном коде.

Масса

Весом изделия редко кто интересуется в момент покупки, но для некоторых облегчённых светильников он имеет значение.

Габариты

Сколько производителей – столько и корпусов, отличающихся внешним видом и габаритами. Например, светодиодные лампы мощностью 10 Вт от разных изготовителей могут отличаться в длину и ширину более чем на 1 см. Выбирая новую led лампу для освещения, не стоит забывать о том, что она должна поместиться в уже имеющийся светильник.

Рынок светодиодной продукции продолжает динамично развиваться, вследствие чего характеристики ламп изменяются и совершенствуются. Надеемся, что в ближайшее время применительно к светодиодным лампам будут выработаны стандарты качества, которые упростят покупателю задачу с выбором. Пока же собственные знания – это главная опора при выборе и покупке.

Читайте так же

Laura Peters

LEDs Magazine

Сборки на основе светодиодов переменного тока часто имеют светоотдачу и эффективность, не уступающие приборам, в которых используются светодиоды постоянного тока, и, при этом, не нуждаются в AC/DC преобразователе. Но могут ли они найти свое место за рамками тех приложений, в которых применяются сейчас?

Сама по себе концепция светодиодов переменного тока (AC-LED) изящна. Им не нужны AC/DC преобразователи и некоторые другие электронные компоненты, требуемые для питания светодиодов постоянного тока (DC-LED), а вся электронная начинка между источником переменного тока и светодиодом максимально упрощена. Действительно, при создании приложений с AC-LED, где светодиод способен работать непосредственно от линии переменного тока или от понижающего трансформатора, может потребоваться лишь корпус со светодиодами и балластный резистор для некоторых приложений. С другой стороны, при использовании AC-LED может потребоваться оптимизация управления питанием (коррекция коэффициента мощности и суммарного коэффициента гармонических искажений). До настоящего времени область применения AC-LED была ограничена нишей карнизной подсветки, садового и декоративного освещения. Но производители AC-LED сборок утверждают, что однажды весь рынок ретрофитных светодиодных ламп перейдет на AC-LED.

В данной статье рассматривается коммерческая доступность AC-LED, сборок на их основе и питающих устройств, и обсуждаются проблемы, решение которых приведет к более легкой интеграции AC-LED в электрические сети, чем это происходит с DC-LED. Также здесь затрагивается возможность выхода AC-LED на рынок ретрофитных ламп, включая лампы MR16, A-лампы и потолочные светильники.

Что означает AC-LED?

Важно отметить, что аббревиатура AC-LED на самом деле неправильна: под LED подразумевают диоды, то есть приборы, пропускающие ток в одном направлении (постоянный ток). Однако при использовании так называемой «AC-LED схемы» светодиоды (LED) могут быть подключены напрямую к сети питания (обычно 110 В/60 Гц или 230 В/50 Гц) и светить без обычно применяемого драйвера. В каждом полупериоде синусоидального переменного напряжения половина светодиодов излучает свет, а другая - нет. В следующем полупериоде светодиоды меняются ролями. В такой конфигурации, иногда называемой встречно-параллельной, или «истинным AC», большое количество последовательно соединенных светодиодов может работать непосредственно от электрической сети.

Однако при таком подходе последовательное включение множества светодиодов в одну цепочку становится фактором, ограничивающим их эффективность. Поэтому несколько лет назад производители AC-LED, включая Lynk Labs of Elgin, IL, Seoul Semiconductor (Сеул, Южная Корея) и Epistar (Синьчжу, Тайвань), начали выпускать светодиоды, точнее, их сборки, работающие от низкого или высокого переменного напряжения с использованием простых схем управления. К ним относятся как низковольтные светодиодные сборки, так и сборки с выпрямителями, подключаемые непосредственно к сети переменного тока. Типичное напряжение питания таких приборов может быть от 12 В до 240 В. Отдельные светодиоды соединяются в цепочку, пиковое напряжение на которой достигает, например, 55 В в каждой полуволне сетевого напряжения 110 В. «Это действительно использование переменного тока на основе высоковольтной архитектуры» - сказал Брайен Уилкокс (Brian Wilcox), вице-президент североамериканского отделения компании Seoul Semiconductor, производителя светодиодов постоянного и переменного тока и сборок на их основе.

Для сравнения, DC-LED нуждаются в драйвере для преобразования переменного сетевого напряжения в низкое постоянное напряжение, питающее светодиод. В состав драйвера входит AC/DC преобразователь, как правило, электролитический конденсатор большой емкости, а также другие компоненты, количество которых может достигать 20, как, например, в 7-ваттной лампе MR16. Для приложений большой мощности требуется еще больше компонентов. Однако Уилкокс заявил, что, несмотря на простоту электронной схемы, разработка устройств с AC-LED связано с необходимостью решения таких проблем, как снижение полного коэффициента гармоник, повышение коэффициента мощности и обеспечение зональной регулировки яркости. «Любая из трех задач нетривиальна, в особенности, когда пытаешься решить все три сразу», - заключил Уилкокс.

В самом деле, можно утверждать, что все эти проблемы, а также низкая, в сравнении DC-LED, эффективность до настоящего времени ограничивали распространение AC-LED. Однако в последних AC-LED и высоковольтных изделиях на их основе перечисленные выше недостатки в значительной степени были устранены. Также в новых приборах должна быть решена и проблема мерцания. «Многие люди жалуются на мерцание AC-LED. Но этот эффект является следствием пространственной удаленности светодиодов. Он возникает, когда светодиоды находятся на большом расстоянии друг от друга, и глаз замечает составляющую выпрямленной частоты 50-60 Гц», - говорит Майк Мискин (Mike Miskin), генеральный директор компании Lynk Labs, производителя AC-LED, сборок на их основе и драйверов. В некоторых последних изделиях этой компании используются высокочастотные схемы, понижающие напряжение с помощью электронного трансформатора или какого-либо другого устройства и формирующие сигнал высокой частоты (1000 Гц и более), устраняющий эффект мерцания.

Плодами усилий разработчиков стали последние модели AC-LED сборок, характеризующиеся лучшей совместимостью с существующей инфраструктурой, повышенной надежностью за счет меньшего количества применяемых компонентов и, возможно, меньшим временем выхода на рынок.

Виды AC-LED

Согласно Мискину, на сегодняшнем рынке представлены три основных типа AC-LED: питаемые низким переменным напряжением, непосредственно высоким переменным напряжением и выпрямленным высоким переменным напряжением. Низковольтные светодиоды работают от напряжения 12 В или 24 В и подключаются через магнитный или электронный трансформатор. Такие светодиоды, как правило, самостоятельно выпрямляют переменный ток. Они нашли применение в садово-парковых светильниках, для скрытого освещения и подсветки торговых прилавков. В высоковольтных сборках (от 15 до 55 В) используется топология с мостовым выпрямителем, где светодиоды питаются импульсным током в каждом полупериоде синусоиды. В устройствах с выпрямителем содержатся встроенные схемы управления, не позволяющие пиковым токам достигать опасных для светодиодов значений.

Технология AC-LED является масштабируемой, поскольку количество включаемых в цепочку светодиодов можно выбирать в соответствии с напряжением сети, и применима в осветительных приборах с питанием от 12 до 277 В. В самом деле, для достижения наибольшей эффективности AC-LED могут работать даже в резонансном режиме, что невозможно для DC-LED. Мискин пояснил, что Lynk разработала новый метод, позволяющий управлять AC-LED вблизи границы резонанса, так что даже, если одна лампа будет удалена из цепи или выйдет из строя, оставшиеся будут работать с той же эффективностью. Он сказал: «Мы полагаем, что в будущем частоты повысятся до соответствия RLC-компонентам, что даст возможность поднять КПД до 98%».

Замена ламп

Сегодня основным целевым рынком для низковольтных и высоковольтных конструкций на основе AC-LED является рынок ретрофитных ламп, включающий миниатюрные лампы, такие как G4, G8, GU10 и MR16, а также лампы B10 для люстр. Компании также разрабатывают продукты для A-ламп, ламп класса BR и линейные модули для замены люминесцентных ламп.

Рынок потолочных светильников также исключительно привлекателен для устройств с AC-LED, поскольку в таких светильниках, как правило, имеется свободное место для размещения дополнительной электроники. Кроме того, свободное пространство можно занять радиаторами охлаждения. Пример предназначенного для подобных светильников прибора показан на (Рисунке 1). 16-ваттный светодиодный модуль Acrich2 компании Seoul Semiconductor имеет световой поток 1250 лм при цветовой температуре 3000K и угле обзора 120°.



Рисунок 2а. В нутреннее устройство лампы MR16 на основе DC-LED. Рисунок 2б. 12-вольтовые AC-LED компании Lynk Labs в корпусах COB. Рисунок 2в. Сборка AC-LED компании Seoul Semiconductor с напряжением питания 120 В и мощностью 4 Вт, эквивалентная 35-ваттной лампе MR16.

На Рисунке 2 сравнивается DC-LED с двумя функционально аналогичными сборками AC-LED. Лампа MR16 или GU10 (последняя подключается к сети напрямую) - прямые кандидаты на установку модуля с AC-LED.

В конечном счете, стоимость и надежность будут склонять чашу весов в пользу схем с AC-LED, а не в пользу наиболее распространенных сейчас DC-LED. «Мы уже значительно снизили стоимость корпуса, составляющую около 40% стоимости светодиода, за счет перехода к технологии монтажа кристалл-на-плате и использования SMD компонентов», - сказал Уилкокс. Однако он утверждает, что цель достижения цены $10 за эквивалент 60-ваттной лампы, зачастую рассматриваемая как точка принятия продукции потребителем, может быть достигнута только за счет удаления из светодиодных ламп и светильников дорогих электронных компонентов. - «Лучшим способом снижения цены является внедрение AC-LED без драйверов». Он добавил, что первыми продуктами, которые появятся на полках розничных магазинов, будут ретрофитные лампы, не требующие диммирования, некоторые из которых будут иметь довольно крупные размеры, как A19 и BR30.

«Я уверен, что в самое ближайшее время мы увидим лампы, заменяющие 60-ваттные лампы накаливания, по цене $15, а чуть позже цена упадет до $10. Это будет продукция компаний с хорошей репутацией, часть которой не будет содержать драйверов. Самыми подходящими областями применения нового товара станут ретрофитные лампы и потолочные светильники», - сказал Уилкокс.

Другая важная сфера применения AC-LED - источники подсветки или местного освещения. На Рисунке 3 показан предназначенный для этих целей светодиодный модуль с резистором.
Как отмечалось ранее, чтобы такая продукция стала преобладать на рынке, ее световой поток, эффективность, коэффициент мощности и коэффициент гармоник должны быть, как минимум, не хуже, чем у DC-LED. Впрочем, световой выход и эффективность надо сравнивать на примере конкретного приложения, мы же рассмотрим проблему управления питанием AC-LED.

Управление питанием

Как уже говорилось, плохое управление питанием в части коррекции коэффициента мощности и коэффициента гармоник ограничило выход AC-LED на широкий рынок. Коэффициент мощности равен отношению активной мощности, потребляемой лампой или светильником, к полной мощности. В устройствах с AC-LED нагрузка является нелинейной, поэтому на коэффициент мощности необходимо обращать особое внимание.

Коэффициент гармоник является числовым представлением степени искажения формы кривой тока по сравнению с синусоидальной формой напряжения сети. Гармоники представляют собой нежелательные составляющие тока, кратные основной частоте сети (50 или 60 Гц), приводящие к потерям мощности. Хотя вопрос выходит за рамки этой статьи, стоит отметить, что для уменьшения коэффициента гармоник в устройствах с AC-LED используются различные типы схем согласования, включая резисторы и импульсные источники питания.

Уилкокс отметил, что в линейке продукции Acrich2 блок управления питанием имеет КПД 90% и коэффициент гармоник менее 25%.

Диммирование

Одним из основных преимуществ AC-LED является совместимость с фазоотсекающими (симисторными) диммерами. «Мы можем уменьшить яркость до 2%, что является реальным преимуществом», - утверждает Мискин. Кроме того, Lynk Labs представила технологию, которая «нагревает» цвет свечения при диммировании от 4000K до 2000K с помощью AC-LED и токоограничивающих компонентов.

Выводы

Сборки на основе AC-LED представляют собой конкурентоспособную платформу, особенно на рынке ретрофитных ламп. Падет ли на них выбор производителей ламп и светильников, будет зависеть от характеристик и стоимости таких решений по сравнению со сборками на базе уже проверенных в деле DC-LED. Гонка за создание десятидолларовой замены 60-ваттных ламп накаливания может быть выиграна как одной технологией, так и обеими.

  • Я считаю что основной проблемой светодиодного освещения является то что с введением принципиально новой технологии не был создан новый стандарт разъемов для новых ламп. Вместе с запретом на использование ламп накаливания необходимо было запретить использование резьбовых патронов эдисоновского стандарта "Е" (Е27, Е17, Е14). Абсурдность ситуации в том что старые патроны вообще не подходят для светодиодных светильников но продолжают воспроизводиться массово. Производители ламп ориентируются на имеющиеся светильники, производители светильников на имеющиеся лампы, в это вкладываются деньги, создаются новые производства тиражирующие стандарт которому уже давно пора умереть. Очевидно что без административного вмешательства ситуация не исправляется, но в том то и дело что ни кто не решается узаконить какой либо из подходящих разъемов в качестве нового стандарта. Логично было бы принять стандартом для новых ламп постоянное напряжение 12v и таким образом объединить ассортимент ламп для автомобилей и для быта. Некоторые из разъемов автомобильных ламп вполне подходят и для основы нового стандарта. Это позволило бы быстрее перевести автомобили на светодиоды что в общем то давно надо было уже сделать. Лично мне не понятно почему в автомобилях до сих пор применяются лампы накаливания которые не только не экономичны и стремительно сажают аккумуляторы но просто не выдерживают удары и вибрации, эти лампы постоянно приходится менять. Вынос преобразователя выпрямителя из самой лампы с светильник не только снизит себестоимость лампочки но и радикально повысит ее надежность и долговечность, избавит от мигания и стробоскопического эффекта. Я бы вообще создавал бы панели в которых не белые а разноцветные светодиоды совместно создают нормальное освещение, это и дешевле и спектр можно подобрать точнее. В общем ситуация давно созрела... но что я читаю в этой статье? производители по прежнему пытаются приспособиться к стандарту которому уже больше 100 лет! Я очень уважаю изобретателей но по моему они тратят силы по дурному.
  • Мне думаеться,что главная проблемма сейчас,состоит в удешевлении светодиодных матриц.А остальное,это мелочи.
  • Не волнуйтесь, по мере увеличения объемов производства цена будет падать и мы ни чем не можем ни ускорить ни замедлить процесс. Но конечные светильники упорно воспроизводят стандарт патронов 100 летней давности и это создает производителям кучу проблем. В цоколе Е27 невозможно разместить нормальный выпрямитель со сглаживающими конденсаторами и это создает кучу проблем. 1. напряжение питания получается не постоянным а импульсным и лампа мигает с частотой 100 Гц. Это вроде бы незаметно, но тем не менее глаза устают. Есть вероятность возникновения стробоскопического эффекта. 2. высокочастотные импульсы от драйвера питания не фильтруются этим недоделанным фильтром и это создает помехи и лишнее электромагнитное излучение. 3. Но самая главная проблема в цене, надежности и долговечности. В столь малом объеме невозможно разместить полноценное устройство на надежных элементах, в целях экономии места приходится жертвовать либо надежностью, либо функциональностью и по любому применять более дорогие детали. Кроме того было бы очень уместно унифицировать осветительные элементы для автомобилей и быта приведя все к 12v постоянного тока. Столь радикальное сокращение ассортимента само по себе снизит цену, а к тому же лампы будут выпускаться без выпрямителей что тоже повлияет на цену. В перспективе можно создавать в домах отдельную осветительную сеть на 12v с резервацией аккумуляторами. К этой сети могут подключаться различные маломощные потребители типа зарядок мобильников, любое другое маломощное электрооборудование вплоть телевизоров. 12 v это абсолютно безопасно и позволяет обходится без гальванической развязки что все вместе существенно упростит и удешевит всю бытовую технику. В новый стандарт легко интегрируется ветроустановка или солнечные батареи. В перспективе вся эта техника сможет применяться везде, от палатки в лесу, дачи, кабины авто и до офиса везде единый стандарт, не надо создавать отдельно приборы мобильного и не мобильного исполнения. При этом конечно же в доме должны быть разъемы высокого напряжения для питания мощных устройств типа стиральных машин, эл. плиток и чайников...
  • как я понял,изначально идея была на увеличение надёжности отказом от преобразователей,но здесь такие же преобразователи и в чём смысл?
  • Что въелись в этот стандарт? Цоколей и без эдисоновского E предостаточно, например GU5.3 И лампочки выпускаются на 12 вольт и выпрямители. Покупай кому чего нравится. Какие быстрые - запретить, запретить!
  • Я и не волнуюсь,на счёт этого.Я волнуюсь на счет того, что сделают нам светодиодные светильники с заведомо перенапряженным режимом.И не влезть туда,ни дело исправить уже не выйдет,нате мол,.еште что дают.
  • GU5.3 симметричный, предназначен для сети переменного тока предназначены на небольшой ток но зато хорошо выдерживают перегрев. Я бы сделал разъем просто в виде пластины фольгированного пластика. С одной стороны один контакт, с другой другой контакт. Сама пластина стразу же является монтажной площадкой для микросхем и светодиодов. Большая площадь контактной поверхности, компактность и механическая прочность. Но главное простота и технологичность изготовления в пределах отработанных технологий. Можно сделать ключ чтобы невозможно было вставить не правильно. А на счет "запретить Е27"... вы в магазинах бываете, что в ассортименте видите? Таки реально без административного вмешательства ситуацию не переломить. А лампочки на 12V я у себя уже понаставил. Но ведь не все умельцы.
  • Полностью согласен. Устройство, состоящее более чем из одной детали, должно быть подвержено хотя бы попытке его отремонтировать. А в данном случае поприклеивали всё к плате и вуаля, вэлком ту помойка, как контрацептив:D стОит посмотреть фильм о том самом эффекте лампочки http://www.youtube.com/watch?v=ssSlodrPY3M
  • Есть такое дело
  • А насчёт стандарта в 12в,надо учитывать токи.Чтобы передать мощность при низком напряжении надо увеличить ток,а следовательно сечение проводов.Электромонтаж будет стоить дороже.Но есть большой плюс-электробезопасность.И есть минус-пожарная безопасность.
  • Скоро лампочек не будет,будем выбирать светильники,а внуквм рассказывать что ранше мол,были лапочки,которые переодически сго рали.а сейчас мол покупай светильник,вешай а понятие лампочки уйдёт в прошлое.
  • К сожалению пока мы тут обсуждаем вопросы повышения долговечности банкиры уже давно все решили и наняли инженеров которые примут меры к тому чтобы и светодиодные лампы не служили долго. Проблема в самой финансовой системе. А лекарство есть, его изобрели очень давно но хорошо описал Сильвио Гезель. Лекарство это называется "Фрайгельд" и применялось неоднократно, но каждый раз уничтожалось банкирами. Может ну ее к черту, эту лампочку. Давайте внедрять альтернативные платежные средства. К примеру на основе водки. А что, "жидкая валюта" уже давно стала нормой, так давайте превратим ее в бумагу или даже электронные деньги, ну чтобы нельзя было выпить в подворотне. Кто не верит в водку так за основу может быть взято что угодно.
  • Так то оно так, но учтите что сеть 12V изначально позиционируется как питание для маломощных устройств, ну максимум телевизор, компьютер. Плиты, стиральные машины, утюги, кипятильники... все это должно запитываться от других источников. Да, казалось бы проводки больше. Но в вашем доме максимум 4 - 6 мощных потребителей, а маломощных в десять раз больше. Каждому такому устройству начиная с зарядки для мобильника требуется преобразователь с гальванической развязкой. А питание от 12 вольт потребует весьма примитивного последовательного стабилизатора. Постоянное напряжение позволит отказаться от громоздких конденсаторов в каждом устройстве. Появится возможность легко и дешево резервировать питание аккумуляторами, подключать альтернативные источники энергии. И полная унификация автомобильного, бытового и офисного оборудования. Я уверен что сеть 12V куда более удобна для передачи сигналов. В общем выигрышей масса, но инерция старого тянет. И тут есть свои плюсы: Новый стандарт может развиваться параллельно как мобильный но с перспективой вытеснения старого стандарта.
  • Извините Гарик, а это видео смотрели? http://www.youtube.com/watch?v=ssSlodrPY3M Вы похоже так и не поняли что проблема долговечности лежит не в области технических решений а в области политики и финансов. Эти ребята заинтересованны в том чтобы мы вечно играли в ту игру где все бегут вокруг стульев, а стульев то обязательно меньше чем задниц которые надо усадить. И не потому что стульев мало, а просто правила в этой игре такие. Но есть только одна жопа которая всегда на стуле -- тот под чью дудку все бегут толкая друг друга. Выход есть, не участвовать в этих гонках, создать свою систему где люди не загрызают друг друга в угоду пастуху. При чем такие сообщества существуют, но продажные СМИ предпочитают на эту тему не распространяться. Ищите в интернете "Фрайгельд", "деньги Сильвио Гезеля", "WARA", "WIR франки ", "альтернативные деньги"...
  • Я достаточно долго живу и мне-ли не понять:DЕсть такой рассказ,когда к директору крупной фирмы,приходит изобрететель.Он предлагает вечную бритву,и директор охотно покупает изобретение,не для того что-бы делать вечные бритвы,а для того что-бы никто и никогда не увидел этого изобретения.
  • Не всё так просто. Цоколь не тормозит внедрение светодиодных ламп. Тормозит их цена. При переходе на КЛЛ думали, что они себя оправдают. Не вышло. У меня, например, освещение занимает небольшую часть всего потребления. Главными являются электроплита, водонагреватель. Идея с переходом на 12 в питание вызывает недоумение. Почему 12, а не 36? И зачем надо унифицировать с автомобильными лампочками, которые тоже переходят на 24 в? Кстати, про недолговечность автомобильных ламп. Они очень надёжны. У меня машине 10 лет, менял только 2 лампочки передних габаритов. А вот дневные светодиодные ходовые огни, установленные некоторыми владельцами, часто можно увидеть, что горит всего половина диодов. И что надёжнее? Представим, что перешли на 12 в. Окажется, что кроме зарядника для телефона, стационарного телефона и роутера больше и нет маломощных потребителей. Телевизор, у меня, например, с LED матрицей 40" потребляет 140 вт, про плазменные вообще молчу. Это 12 ампер. При длине проводки 10 м сечением меди 1,5 мм^2 потери составят почти 3,5 в. Всё равно в каждой комнате придётся оставлять розетки 220 в, иначе куда будете включать пылесос, элетрообогреватель? Надо будет забыть про двойники-тройники-удлинители. Не дай Бог, эту идею удасться воплотить.
  • Полностью согласен. Так он еще современный компьютер предлагает к сети 12В подключить. Так он жрёт дай бог, особенно геймерский:eek: Пишет что не будет громоздких фильтрующих конденсаторов. А кто фильтровать будет? Электростанция или подстанция? Ну если толь ко не солнечная энергия, а где она у нас в России? Где 2/3 север.
  • Прочитал все, но остановился на Вашем высказывании. Давайте начнем с истории, кода "лампочку Ильича" с нитью накала довели до 250 000 часов работы, к 1940_м годам после сбора производителей ламочек их ресурс был уменьшен до 100 000 ч., сейчас Вы перероете весь нет и найдете 1 - лампочка имеет ресрурс 50 часов. Что касается светодиодных ламп, если на сегодняшний день обычный светодиод - (это прибор с р-п переходом высокотехнологичный) и светодиод переменного тока, ну р-п переход - 2 различных металла и не более, это все рано обычный разрядник, ну линзу приделали. Что касается срока службы - что люминисцентки по несколько штук сдаеш за срок гарантии, что светодиодные, электронная часть вообще не меняется. Что касается стандартов, допустим делать лампочки на 12В, можно и на все 1 стабилизатор - а за что деньги брать? Многие производители, как и данный ГАРИК - поднять цены на лампы - да поднимайте, наверно мало кто задумывался - "как работает система - кто кого поимеет". На сегодня на зарплату купить 10 - 15 лампочек или допустим 1 светодиодный светильник вместо 4_х 20 Вт. люминисцентных ламп. В связи с ненадежностью на сегодняшний день светодиодных осветительных приборов - многие производители беруться за голову - зачем мы дали 3 или 5 лет гарантии, возникает вопрос - если Вы продаете по таким ценам и не хочете давать гарантии - нахрена Вы нужны и Ваши лампы? Сейчас на производстве 600 светильников сместо люминисцентных 4*20Вт, еще год гарантии, но уже думают на что менять, так, как горят, как свечки, ремонт по гарантии припоршивый и хрен когда их купят.
  • С некокорыми мыслями соглашусь. С перепроизводством например. Про разрядник промолчу и даже - ставить не буду. Сам делаю уже два года светодиодные лампы. На 1 Вт, 3 Вт. и пока 5730 светодиодах. схемы разные. первые очень простые с гасящим конденсатором. Не нравятся. Работают в деревне, в конце улицы,распредсети на переделаны, старые, напруга гуляет и яркость плавает. Для кладовки пока терплю.Но не умирают светодиоды. Радиаторы стоят. Ток не превышает номинального. Что не так делаю. Теперь делаю на контролерах. Покупаю готовые китайские. Опять же радиаторы, вентиляция, ток. Ремонтировали на работе готовый светильник промышленный(для потолков "армстронг", название не помню), правда не очень дорогой. Радиаторы недостаточные, ток нестабилен (микросхему заменили с донора), все запаковано, вентиляции нет. Пришлось доводить до ума оба светильника установленные в мастерской. Теперь все нормально. Правда работает пока только полгода. Но проживет долго. Видел хорошие немецкие(привезенные с Германии) лампы. Радиатор, вентиляция. Ток не мерил, но верю что не шалит. Главное преимущество светодиодов перед лампами накаливания - экономичность. Что за этим стоит думаю понимаете, и главное это не ваши деньги.
  • Вы меряли ток вероятнее всего обычным тестером. Попробуйте при возможности взять 3 различных лампочки "лампочка Ильича", люминисцентную и светодиодную и посмотрите разницу - сколько каждая из них потребляет активной и реактивной энергии - через счетчики. Я этим хочу сказать, что да, само меньше потребляет светодиодная, затем люминисцентная и только затем лампочка ильича - но такова ли разница, которая написана на коробке каждой из лампочек и фактическая (специально не пишу цифры, во избежание споров). А затем еще 1 интересная тема для раздумья - в какой из "бывших стран СНГ" Вы лично проживаете и сколько Вы по факту платите на сегодняшний день. Я не беру во внимание поднятие цен энергосбытом в последние годы, только лампочки.
СОДЕРЖАНИЕ

Введение


  1. Классификация и основные параметры электрических источников света

    1. Лампы накаливания

    2. Люминесцентные лампы низкого давления

    3. Люминесцентные лампы высокого давления

  2. Схемы питания люминесцентных ламп

  3. Основные светотехнические величины

  4. Техника безопасности при обслуживании электроосветительных установок

ВВЕДЕНИЕ

Установки электрического освещения используют во всех про­изводственных и бытовых помещениях, общественных, жилых и других зданиях, на улицах, площадях, дорогах, переездах и т.п. Это самый распространенный вид электроустановок. Различают три вида электрического освещения.

Рабочее освещение предназначается для нормальной деятельно­сти во всех помещениях и на открытых участках при недостаточном естественном освещении. Оно должно обеспечивать нормируемую освещенность в помещении на рабочем месте.

Аварийное освещение предназначается для создания условий безопасной эвакуации людей при аварийном отключении рабочего освещения в помещениях или продолжении работ на участках, где работа не может быть прекращена по условиям технологии. Ава­рийное освещение должно создавать освещенность не менее 5 % общего для продолжения работы или не менее 2 лк, а эвакуационное - не менее 0,5 лк на полу, по основным проходам и лестницам.

Охранное освещение вдоль границ охраняемой территории явля­ется составной частью рабочего освещения, создаст освещенность зоны с обеих сторон ограды.

По правилам устройства электроустановок освещение делят на три системы.

Общее освещение в производственных помещениях может быть равномерным (с равномерной освещенностью по всему помеще­нию) или локализованным, когда светильники размещают так, чтобы на основных рабочих местах создавалась повышенная освещен­ность. Местная система обеспечивает освещение рабочих мест, предметов и поверхностей.

Комбинированной называют такую систему освещения, при ко­торой к общему освещению помещения или Пространства добавля­ется местное, создающее повышенную освещенность на рабочем месте. Основным элементом осветительной электроустановки яв­ляется источник света - лампа, преобразующая электроэнергию в световое излучение.

Большое распространение получили два класса источников света: лампы накаливания и газоразрядные (люминесцентные, ртут­ные, натриевые и ксеноновые).

Основными характеристиками лампы являются номинальные значения напряжения, мощности светового потока (иногда - силы света), срок службы, а также габариты (полная длина L, диаметр, высота светового центра от центрального контакта резьбового или штифтового цоколя до центра нити).

Наиболее употребительные типы цоколей: Е - резьбовой; В s - штифтовой одноконтактный, В d - штифтовой двухконтактный (последующие буквы обозначают диаметр резьбы или цоколя).

Кроме того, применяют фокусирующие Р, гладкие цилиндри­ческие софитные SV некоторые другие цоколи.

В маркировке ламп общего, назначения буквы означают: В - вакуумные, Г - газонаполненные, Б - биспиральные газонапол­ненные, БК - биспиральные криптоновые.

Большое значение имеет зависимость характеристик ламп на­каливания (ЛН) от фактически подводимого напряжения. С повы­шением напряжения увеличивается температура накала нити, свет становится белее, быстро возрастает поток и несколько медленнее световая отдача, в результате этого резко уменьшается срок службы лампы.

Широко применяемые в осветительных установках трубчатые люминесцентные ртутные лампы (ЛЛ) низкого давления имеют ряд существенных преимуществ по сравнению с ЛН; например, высо­кую световую отдачу, достигающую 75 лм/Вт; большой срок службы, доходящий у стандартных ламп до 10 000 ч: возможность примене­ния источника света различного спектрального состава при лучшей для большинства типов цветопередаче, чем у ламп накаливания; относительно малую (хотя и создающую ослепленность) яркость, что в ряде случаев является достоинством.

Основными недостатками ламп ЛЛ являются: относительная сложность схемы включения; ограниченная единичная мощность и большие размеры приданной мощности; невозможность переклю­чения ламп, работающих на переменном токе, на питание от сети постоянного тока: зависимость характеристик от температуры внешней среды. Для обычных ламп оптимальная температура ок­ружающего воздуха 18 - 25°C, при отклонении температуры от оптимальной световой поток и световая отдача снижаются; при t
При действующих нормах, в которых разрыв между значениями освещенности для ламп накаливания и газоразрядных в большин­стве случаев не превышает двух ступеней, высокая световая отдача и большой срок службы ЛЛ так же, как ламп ДРЛ, делают их в большинстве случаев более экономичными, чем лампы накалива­ния.

Достоинствами ламп ДРЛ являются: высокая световая отдача (до 55 лм/Вт); большой срок службы (10 000 ч); компактность; устойчивость к условиям внешней среды (кроме очень низких температур).

Недостатками ламп ДРЛ следует считать: преобладание в спек­тре лучей сине-зеленой части, ведущее к неудовлетворительной цветопередаче, что исключает применение ламп в случаях, когда объектами различения являются лица людей или окрашенные по­верхности; возможность работы только на переменном токе; необ­ходимость включения через балластный дроссель; длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания даже после очень кратковременного перерыва питания лампы после остывания (примерно 10 мин); пульсации светового потока, большие, чем у люминесцентных ламп; значительное сни­жение светового потока к концу срока службы.

Лампы накаливания изготовляют на напряжения 12-20 В мощностью 15-1500 Вт. Срок службы ламп накаливания общего назначения составляет 1000 ч. световой поток, измеряемый в лю­менах, на 1 Вт потребляемой лампой мощности колеблется от 7 (для ламп малой мощности) до 20 лм/Вт (для ламп большой мощности). Колбы ламп накаливания наполняют нейтральным газом (азотом, аргоном, криптоном), что увеличивает срок службы вольфрамовой нити накала и повышает экономичность ламп.

В настоящее время выпускают зеркальные лампы накаливания типов ЗК и ЗШ на повышенное напряжение: 220-230, 235-245 В.

Галогенные лампы накаливания типа КГ-240 (трубчатой формы с вольфрамовой нитью в кварцевой колбе) мощностью 1000, 1500 и 2000 Вт получили распространение в связи с повышенной свето­отдачей.

Люминесцентные лампы представляют собой заполненную га­зом - аргоном - стеклянную трубку, внутренняя поверхность ко­торой покрыта люминофором. В трубке имеется также капля ртути. При включении в электрическую сеть в лампе образуются пары ртути и возникает свет, близкий к дневному.

Электротехническая промышленность выпускает серию энергоэкономичных ламп ЛЛ, предназначенных для общего и местного освещения промышленных, общественных и административных помещений (ЛБ18-1, ЛБ36, ЛДЦ18, ЛБ58). Для жилых помещений применяют лампы ЛЕЦ18, ЛЕЦ36, ЛЕЦ58, которые по сравнению со стандартными ЛЛ мощностью 20, 40, и 65 Вт имеют повышенный КПД, уменьшенное на 7-8% потребление электроэнергии, мень­шую материалоемкость, повышенную надежность при хранении и транспортировании. Для административных помещений выпускают ЛЛ с улучшенной цветопередачей (ЛЭЦ и ЛТБЦЦ) мощностью 8-40 Вт. Лампы имеют линейную и фигурную форму (U и W-об­разную, кольцевую). Все лампы, кроме кольцевых, имеют на концах двухштыревые цоколи.

По спектру излучаемого света ЛЛ разделяют на типы: ЛБ - белая, ЛХБ - холодно-белая, ЛТБ - тепло-белая, ЛД-дневная и ЛДЦ - дневная правильной цветопередачи.

Дуговые ртутные лампы ДРЛ высокого давления с исправленной цветностью состоят из стеклянной колбы, покрытой люминофором, внутри которой помещена кварцевая газоразрядная трубка, напол­ненная ртутными парами.

Газоразрядные металлогалоидные лампы ДРИ выпускают со световой отдачей 75-100 лм/Вт продолжительностью горения 2000-5000 ч. Эти лампы обеспечивают лучшую цветопередачу, чем лампы ДРЛ.

Для освещения сухих, пыльных, влажных помещений выпуска­ют металлогалоидные зеркальные лампы-светильники типа ДРИЗ.

Натриевые лампы ДНаТ мощностью 400 и 700 Вт излучают золотисто-белый свет; их световая отдача 90-120 лм/Вт, продол­жительность горения более 2500 ч.


  1. Классификация и основные параметры электрических источников света

Электрические источники света по способу генерирования ими излучения могут быть разделены на температурные (лампы накаливания) и люминесцентные (люминесцентные и газоразряд­ные лампы).

Основные параметры электрических источников света: на­пряжение питающей сети; номинальная мощность; световая от­дача, измеряемая числом люменов на один ватт (лм/Вт); пуско­вые и рабочие токи; номинальный световой поток; спад свето­вого потока через определенное время эксплуатации; средняя продолжительность работы лампы.

1.1. Лампы накаливания

Для целей освещения все еще широко применяются электри­ческие лампы накаливания, что объясняется простотой их экс­плуатации и включения в сеть, надежностью и компактностью.

Основной недостаток ламп накаливания - низкий КПД (около 2 %), т. е. лампы накаливания больше греют, чем светят. Срок службы ламп накаливания составляет в среднем 1000 ч. Лампы накаливания очень чувствительны к изменениям подво­димого к ним напряжения. Повышение напряжения на 1 % сверх номинального приводит к повышению светового потока на 4 % и снижению срока службы на 13-14 %. При понижении на­пряжения срок службы возрастает, но снижается световой поток лампы, что сказывается на производительности труда работаю­щих.

Срок службы ламп накаливания снижается при их вибраци­ях, частых включениях и отключениях, невертикальном положе­нии. Свет ламп накаливания отличается от естественного преоб­ладанием лучей желто-красной части спектра, что искажает есте­ственную расцветку предметов.

Лампы накаливания могут быть вакуумными (тип В мощно­стью от 15 до 25 Вт) и газополными (типы Г, Б, БК мощностью от 40 до 1500 Вт).

Газополные лампы типа Г (моноспиральные) и Б (биспи-ральные) наполняются аргоном с добавлением 12-16 % азота.

Конструктивно биспиральная лампа отличается от моноспи­ральной тем, что у нее нити имеют форму двойных спиралей, т. е. спирали, свитой из спирали. У этих ламп световая отдача примерно на 10 % выше, чем у обычных (моноспиральных) ламп.

Биспиральные лампы с криптоновым наполнением (лампы типа БК) внешне отличаются своей грибовидной формой и имеют световую отдачу на 10-20 % выше, чем лампы с аргоно­вым наполнением. Из-за высокой стоимости газа криптона лам­пы типа БК выпускаются мощностью от 40 до 100 Вт.

Заметим, что вольфрамовая нить накала может сворачиваться не только в спираль и биспираль, но и в триспираль и образовы­вать различные конструктивные формы (цилиндрическую, коль­цевую, прямоугольную и т. п.). Шкала номинальных мощностей ламп накаливания общего назначения (Вт): 15, 25, 40, 60, 75, 100, 150, 200, 300, 500, 750, 1000.

Лампы мощностью 15 и 25 Вт выпускаются вакуумными, 40- 100 Вт - биспиральными с аргоновым или криптоновым запол­нителем, 150 Вт - моноспиральными или биспиральными и 200 Вт и выше - моноспиральными с аргоновым заполнителем. Свето­вая отдача ламп 7-18 лм/Вт.

Для ламп мощностью от 15 до 200 Вт применяется цоколь ти­па Е27/27, для ламп мощностью 300 Вт с колбой длиной 184 мм - цоколь Е27/30, для ламп мощностью от 300 до 1000 Вт - цоколь Е40/45.

Лампы мощностью до 300 Вт могут изготавливаться как в прозрачных, так и в матированных (МТ), опаловых (О), молоч­ных (МЛ) колбах. Отметим, что опал - это минерал подкласса гидроокислов (SiO 2 x nH 2 O).

Условные обозначения ламп накаливания общего назначения: слово «лампа», тип наполнения и тела накала, вид колбы лампы (если она непрозрачная), диапазон напряжения, номинальная мощность, номер ГОСТа. Например, обозначение «Лампа В 125-135-25 ГОСТ 2239-79» расшифровывается так: лампа вакуумная, прозрачная колба на напряжение 125-135 В, мощность 25 Вт, изготовлена по ГОСТ 2239-79.

Обозначение «Лампа ГМТ 220-230-150 ГОСТ 2239-79» чита­ется следующим образом: лампа газонаполненная моноспираль­ная аргоновая в матированной колбе на напряжение 220-230 В, мощность 150 Вт, изготовлена по ГОСТ 2239-79.

Лампы накаливания для местного освещения изготавливаются на напряжение 12 В мощностью от 15 до 60 Вт и на напряжение 24 и 36 -В мощностью 25, 40, 60 и 100 Вт. Обозначение этих ламп, например МО-36-60 или МО-12-40, расшифровывается так: лампа накаливания для местного освещения напряжением 36 В мощностью 60 Вт и лампа накаливания для местного осве­щения напряжением 12 В мощностью 40 Вт. Кроме того, выпус­каются миниатюрные лампы накаливания типа МН на напряже­ние 1,25 В мощностью 0,313 Вт; 2,3 В мощностью 3,22 Вт; 2,5 В мощностью 0,725 Вт, 1,35 Вт, 2,8 Вт; 36 В мощностью 5,4 Вт. Световой поток ламп со временем может снижаться. Существуют нормы снижения светового потока каждой лампы после 750 ч работы при расчетном напряжении.

В последнее время широкое рас­пространение получили лампы нака­ливания, колбы которых покрыты зеркальным или белым диффузным отражающим слоем. Такие лампы называются лампами-светильниками. Зеркальной части колбы придают соответствующую форму с тем расче­том, чтобы получить определенную кривую силы света (рис. 2.2). Так как лампы с отражающими покрытиями имеют необходимую кривую силы света, для их применения использу­ются световые приборы без оптиче­ских устройств, что значительно удешевляет светильники к ним. Эти лампы не нуждаются в чистке, и их световой поток более стабилен в процессе эксплуатации.

Лампы накаливания с отражающими слоями (лампы-све­тильники) подразделяются на: лампы общего освещения с диф­фузным (Д) слоем типа НГД (лампы накаливания, газонапол­ненные аргоном, моноспиральные с диффузным слоем); лампы местного освещения с диффузным слоем типа МОД; лампы зер­кальные со средним (Г) светораспределением типа НЗС; лампы зеркальные с широким (Ш) светораспределением типа ЗН27- ЗН28; лампы зеркальные с концентрированным светораспреде­лением типа НЗК; лампы зеркальные для местного освещения типа МОЗ.

Лампы общего освещения с диффузным слоем типа НГД из­готавливаются на напряжение 127 В мощностью 20, 60, 100, 150 и 200 Вт и на напряжение 220 В мощностью 40, 100, 150, 200 и 300 Вт.

Лампы местного освещения с диффузным слоем типа МОД изготавливаются на напряжение 12 В мощностью 25, 40 и 60 Вт и на напряжение 36 В мощностью 40, 60 и 100 Вт.

Лампы зеркальные со средним (Г) светораспределителем типа НЗС выпускаются на напряжение 127 и 220 В мощностью 40, 60, 75 и 100 Вт.

Лампы зеркальные с широким (Ш) светораспределением типа ЗН30 выпускаются только на напряжение 220 В мощностью 300, 500, 750 и 1000 Вт.

Лампы зеркальные с концентрированным светораспределени­ем типа НЗК выпускаются на напряжение 127 и 220 В мощно­стью 40, 60, 75, 100, 150, 200, 300, 500, 750 и 1000 Вт. Срок служ­бы всех ламп на напряжение 220 В и ламп мощностью от 150 до 1000 Вт на напряжение 127 В составляет 1500 ч.

Лампы зеркальные для местного освещения типа МОЗ быва­ют только на напряжение 36 В мощностью 40, 60 и 100 Вт.

Срок службы всех ламп, не отмеченных выше, составляет 1000 ч. Световая отдача ламп 8,5-20, 6 лм/Вт.

Промышленность выпускает также галогенные лампы нака­ливания, срок службы которых составляет 2000 и более часов, т. е. в 2 раза больше, чем указанных выше ламп.

В состав газового заполнения колбы галогенной лампы нака­ливания добавляется йод, который при определенных условиях обеспечивает обратный перенос испарившихся частиц вольфрама со стенок колбы лампы на тело накала. Именно это обстоятельст­во позволяет повышать в 2 раза срок службы лампы накаливания при повышенной световой отдаче. Галогенные лампы имеют ли­нейные и компактные тела накала. Линейные тела накала выполне­ны в форме длинной спирали (отношение длины спирали к диа­метру более 10), которая помешается в кварцевую колбу трубчатой формы с торцовыми вводами. Компактные тела накала имеют спираль меньшей длины. У таких ламп также меньше и колба.

Обозначение галогенных ламп: КГ220-1000-5 - галогенная лампа с колбой из кварцевого стекла, йодная, напряжение 220 В, мощность 1000 Вт, номер разработки 5; КГМ (малогабаритная) на напряжение 30, 27 и 6 В.

Трубчатые галогенные лампы накаливания выпускаются на напряжение 220 В мощностью 1000, 1500, 2000, 5000 и 10 000 Вт, а также на напряжение 380 В мощностью 20 000 Вт. Световой поток галогенных ламп составляет от 22 клм (лампы мощностью 1000 Вт) до 260 клм (лампы мощностью 10 000 Вт). Световая от­дача этих ламп 22-26 лм/Вт.

Из-занестабильности напряжения питающей сети в настоя­щее время выпускаются лампы накаливания, допускающие от­клонение напряжения в диапазоне ±5 В от расчетного. Диапазон напряжений указывается на лампе, например 125-135 В, 215- 225 В, 220-230 В, 225-235 В, 230-240 В.

Для повышенного напряжения электрической сети выпуска­ются специальные лампы накаливания на расчетное напряжение 235 В и 240 В. Здесь диапазон изменения напряжения составляет 230-240 В и 235-245 В. Расчетное напряжение 240 В применя­ется только для ламп мощностью 60, 100 и 150 Вт. Лампы на на­пряжение 235 и 240 В не следует применять при стабильном на­пряжении сети 230 В из-за резкого уменьшения их светового по­тока в такой сети.

1.2. Люминесцентные лампы низкого давления

Люминесцентные трубчатые лампы низкого давления пред­ставляют собой запаянную с обоих концов стеклянную трубку, внутренняя поверхность которой покрыта тонким слоем люми­нофора. Из лампы откачан воздух, и она заполнена инертным га­зом аргоном при очень низком давлении. В лампу помещена капля ртути, которая при нагревании превращается в ртутные пары.

Вольфрамовые электроды лампы имеют вид небольшой спи­рали, покрытой специальным составом (оксидом), содержащим углекислые соли бария и стронция. Параллельно спирали распо­лагаются два никелевых жестких электрода, каждый из которых соединен с одним из концов спирали.

В люминесцентных лампах низкого давления плазма, состоя­щая из ионизированных паров металла и газа излучает как в ви­димых, так и в ультрафиолетовых частях спектра. С помощью люминофоров ультрафиолетовые лучи преобразуются в излуче­ние, видимое глазом.

Люминесцентные трубчатые лампы низкого давления с дуго­вым разрядом в парах ртути по цветности излучения подразде­ляются на лампы белого света (типа ЛБ), лампы тепло-белого света (ЛТБ), дневного света с исправленной цветностью (ЛДЦ).

Шкала номинальных мощностей люминесцентных ламп (Вт): 15, 20, 30, 40, 65, 80.

Особенности конструкции лампы указываются буквами вслед за буквами, обозначающими цветность лампы (Р - рефлек­торная, У - У-образная, К - кольцевая, Б - быстрого пуска, А - амальгамная).

В настоящее время выпускаются так называемые энергоэконо­мичные люминесцентные лампы, имеющие более эффективную конструкцию электродов и усовершенствованный люминофор. Это позволило изготавливать лампы с пониженной мощностью (18 Вт вместо 20 Вт, 36 Вт вместо 40 Вт, 58 Вт вместо 65 Вт), уменьшенным в 1,6 раза диаметром колбы и повышенной свето­вой отдачей.

Лампы белого света типа ЛБ обеспечивают наибольший све­товой поток из всех перечисленных типов ламп одной и той же мощности. Они приблизительно воспроизводят по цветности солнечный свет и применяются в помещениях, где от работаю­щих требуется значительное зрительное напряжение.

Лампы тепло-белого света типа ЛТБ имеют явно выраженный розовый оттенок и применяются тогда, когда есть необходимость подчеркнуть розовые и красные тона, например при цветопере­даче человеческого лица.

Цветность ламп дневного света типа ЛД близка к цветности ламп дневного света с исправленной цветностью типа ЛДЦ.

Лампы холодно-белого света типа ЛХБ по цветности занима­ют промежуточное положение между лампами белого света и дневного света с исправленной цветностью и в ряде случаев применяются.наравне с последними.

Средняя продолжительность горения люминесцентных ламп не менее 12000 ч.

Световой поток каждой лампы после 70 % средней продолжи­тельности горения должен быть не менее 70 % номинального светового потока.

Средняя яркость поверхности люминесцентных ламп колеб­лется от 6 до 11 кд/м 2 . Световая отдача ламп типа ЛБ составляет от 50,6 до 65,2 лм/Вт.

Люминесцентные лампы при включении их в сеть перемен­ного тока излучают переменный во времени световой поток. Ко­эффициент пульсации светового потока равен 23 % (у ламп типа ЛДЦ - 43 %). С увеличением номинального напряжения, свето­вой поток и мощность, потребляемые лампой, возрастают.

Выпускаются также эритемные и бактерицидные люминес­центные лампы. Их колбы изготавливаются из специального стекла, пропускающего ультрафиолетовые излучения. В эритемных лампах применяется специальный люминофор, преобразующий из­лучение ртутного разряда в ультрафиолетовое излучение с диапазо­ном длин волн, в наибольшей степени вызывающих загар (эритему) человеческой кожи. Такие лампы применяются в установках для искусственного ультрафиолетового облучения людей и животных. Бактерицидные лампы применяются в установках для обеззаражи­вания воздуха; у этих ламп люминофор отсутствует.

Люминесцентные лампы рассчитаны для нормальной работы при температуре окружающего воздуха +15...+40 °С. В случае понижения температуры давление аргона и ртутных паров резко понижается и зажигание, а также горение лампы ухудшаются.

Продолжительность работы лампы тем больше, чем меньшее количество раз она включается, т. е. чем меньше изнашивается оксидный слой электродов. Понижение напряжения, подводи­мого к лампе, а также понижение температуры окружающего воздуха способствуют более интенсивному износу оксида элек­тродов. При снижении напряжения на 10-15 % лампа может не зажечься или же ее включение будет сопровождаться многократ­ным миганием. Повышение напряжения облегчает процесс за­жигания лампы, но уменьшает ее светоотдачу.

Недостатки люминесцентных ламп: снижение коэффициента мощности электрической сети, создание радиопомех и стробо­скопического эффекта из-за пульсации светового потока и т. д.

Стробоскопический эффект состоит в создании у человека при люминесцентном освещении иллюзии того, что движущийся (вращающийся) с некоторой скоростью предмет находится в по­кое или движется (вращается) в противоположную сторону. В производственных условиях это опасно для жизни и здоровья людей. В то же время стробоскопический эффект применяется при проверке правильности работы электросчетчиков. На вра­щающемся диске электросчетчика имеются вдавленные углубле­ния (метки). Если смотреть сверху на диск, освещенный люми­несцентным светом, то в случае правильного хода диска создает­ся впечатление, что углубления (метки) находятся в покое.

Для устранения явлений стробоскопии, снижения радиопо­мех, улучшения коэффициента мощности применяются специ­альные схемы включения люминесцентных ламп.

1.3. Лампы люминесцентные высокого давления

Лампы ртутные высокого давления типа ДРЛ (дуговая ртутная люминесцентная) выпускаются мощностью 50, 80, 125, 175, 250, 400. 700, 1000 и 2000 Вт.

Лампа ДРЛ состоит из стеклянного баллона (колбы) эллипсо­идной формы, на внутренней поверхности которого нанесен слой люминофора - фторогерманата магния (или арсената маг­ния). Для поддержания стабильности свойств люминофора бал­лон заполнен углекислым газом. Внутри стеклянного баллона (колбы) находится трубка из кварцевого стекла, заполненная парами ртути под высоким давлением. Когда в трубке происхо­дит электрический разряд, его видимое излучение проходит че­рез слой люминофора, который, поглощая ультрафиолетовое из­лучение кварцевой разрядной трубки, превращает его в видимое излучение красного цвета.

Средняя продолжительность работы ламп ДРЛ составляет от 6000 ч (лампы мощностью 80 и 125 Вт) до 10 000 ч (лампы мощ­ностью 400 Вт и более).

Для ламп ДРЛ регламентируется также процентное содержа­ние красного излучения (6 и 10 %). Номинальное напряжение сети для всех ламп ДРЛ составляет 220 В. Коэффициент пульса­ции ламп ДРЛ 61-74 %.

К наиболее современным источникам света относятся металлогалогенные лампы, в ртутный разряд которых вводятся добав­ки йодидов натрия, таллия и индия с целью увеличения световой отдачи ламп. Металлогалогенные лампы типа ДРИ (дуговые ртутные йодидные) имеют колбы эллипсоидной или цилиндри­ческой формы, внутри которых размещается кварцевая цилин­дрическая горелка. Внутри этой горелки и происходит разряд в парах металлов и их йодидов.

Мощность ламп ДРИ составляет 250, 400, 700, 1000, 2000 и 3500 Вт. Световая отдача ламп ДРИ составляет 70-95 лм/Вт.

Световая отдача натриевых ламп высокого давления достигает 100-130 лм/Вт. У этих ламп внутри стеклянной цилиндрической колбы помещается разрядная трубка из пол и кристаллического оксида алюминия, инертная к парам натрия и хорошо пропус­кающая его излучение. Давление в трубке - порядка 200 кПа. При таком давлении резонансные линии натрия расширяются, занимая некоторую спектральную полосу, в результате чего цвет разряда становится более белым. Продолжительность работы ламп 10-15 тыс. часов.

Для освещения больших по площади территорий находят применение мощные (5, 10, 20 и 50 кВт) ксеноновые трубчатые безбалластные лампы типа ДКсТ. Они зажигаются с помощью пускового устройства, вырабатывающего высоковольтный (до 30 кВ) высокочастотный импульс напряжения, под воздействием которого в лампе возникает разряд в ксеноне.

Лампы мощностью 5 кВт имеют номинальное напряжение ПО В, мощностью 10 кВт - напряжение 220 В, мощностью 20 и 50 кВт - напряжение 380 В. Световая отдача этих ламп - от 17,6 до 32 лм/Вт.

2. Схемы питания люминесцентных ламп

Люминесцентные лампы включаются в сеть последовательно с индуктивным сопротивлением (дросселем), обеспечивающим стабилизацию переменного тока в лампе.

Дело в том, что электрический разряд в газе имеет неустойчи­вый характер, когда незначительные колебания напряжения вы­зывают резкое изменение тока в лампе.

Различают следующие схемы питания ламп: импульсного за­жигания, быстрого зажигания, мгновенного зажигания.

В схеме импульсного зажигания (рис. 1) процесс зажигания обеспечивается пускателем (стартером). Здесь вначале подогреваются электроды, затем возникает мгновенный импульс напряжения. Стартер представляет собой миниатюрную газоразрядную лампочку с двумя электродами. Колба лампочки заполнена инертным газом неоном. Один из электродов пускате­ля жесткий и неподвижный, а другой биметаллический, изги­бающийся при нагреве. В нормальном состоянии электроды пус­кателя разомкнуты. В момент включения схемы в сеть к элек­тродам лампы и пускателя прикладывается полное напряжение сети, так как ток в цепи лампы отсутствует и, следовательно, по­теря напряжения в дросселе равна нулю. Приложенное к элек­тродам стартера напряжение вызывает в нем газовый разряд, ко­торый в свою очередь обеспечивает прохождение тока неболь­шой силы (сотые доли ампера) через оба электрода лампы и дроссель. Под действием теплоты, выделяемой проходящим то­ком, биметаллическая пластина, изгибаясь, замыкает пускатель накоротко, в результате чего сила тока в цепи возрастает до 0,5- 0,6 А и электроды лампы быстро нагреваются. После замыкания электродов пускателя газовый разряд в нем прекращается, элек­троды остывают и затем размыкаются. Мгновенный разрыв тока в цепи вызывает появление электродвижущей силы самоиндук­ции в дросселе в виде пика напряжения, что и приводит к за­жиганию лампы, электроды которой к тому моменту оказывают­ся раскаленными. После зажигания лампы напряжение на ее за­жимах составляет около половины сетевого. Остальная часть на­пряжения гасится на дросселе. Напряжение, прикладываемое к пускателю (половина сетевого), оказывается недостаточным для его повторного срабатывания.

Рис. 1. Импульсная схема включения люминесцентной лампы в сеть:

1 – пускатель (стартер); 2 – лампа; 3 – дроссель.

В схеме быстрого зажигания (рис. 2) элек­троды ламп включены на отдельные обмотки специального накального трансформатора. При подаче напряжения на негорящую лампу потеря напряжения в дросселе будет невелика, по­вышение напряжения обмоток накала полностью приложено к электродам, которые быстро и сильно раскаляются, и лампа мо­жет зажечься при нормальном сетевом напряжении. В момент возникновения разряда в лампе сила тока накала пускорегулирующего аппарата автоматически уменьшается.

Рис. 2. Схема быстрого зажигания люминесцентной лампы:

1 – дроссель; 2 – лампа; 3 – накальный трансформатор.

В схеме мгновенного зажигания (рис. 3) используется дроссель-трансформатор и отдельный резонансный контур, создающий повышенное (в 6-7 раз больше рабочего) напряжение на лампе в момент включения. Схемы мгновенного зажигания применяются только в отдельных случаях, например во взрывоопасных помещениях с лампами, содержащими специ­альные усиленные электроды. Электроды ламп нормального ти­па в схеме, показанной на рис. 3, быстро изнашиваются. Высо­кое напряжение, подаваемое на лампу в начальный момент, представляет опасность для обслуживающего персонала.


Рис. 3. Схема мгновенного зажигания люминесцентной лампы

1 – лампа; 2 – конденсатор; 3 – дроссель-транформатор.

При работе дросселей возникает шум. Для обеспечения необ­ходимых силы тока и напряжения на зажимах лампы в пусковом и рабочих режимах, повышения коэффициента мощности, уменьше­ния стробоскопического эффекта и снижения уровня радиопомех к люминесцентным лампам придаются специальные пускорегулирующие аппараты. В состав пускорегулирующих аппаратов входят дроссели, конденсаторы (для повышения коэффициента мощно­сти и подавления радиопомех) и сопротивления, помещаемые в общий металлический кожух и заливаемые битумной массой.

По способу зажигания пускорегулирующие аппараты делятся на три группы: стартерного (условное обозначение УБ), быст­рого и мгновенного зажигания (условное обозначение АБ).

Основные типы пускорегулирующих аппаратов для люминес­центных ламп: 1УБИ-40/220-ВП-600У4 или 2УБИ-20/220-ВПП-110ХЛ4, что означает следующее: первая цифра указывает, какое количество ламп включается с аппаратом; УБ -стартерный пускорегулирующий аппарат; И - индуктивный сдвиг фаз потреб­ляемого аппаратом тока (может быть Е - емкостный или К - компенсированный, т. е. компенсирующий стробоскопический эффект); 40 и 20 - мощность лампы, Вт; 220 - напряжение пи­тающей сети, В; В - встроенный аппарат (может быть Н - независимый); П - с пониженным уровнем шума; ПП - с осо­бо низким уровнем шума; 600 и ПО - номер серии или моди­фикация пускорегулирующего аппарата; У и ХЛ - пускорегулирующий аппарат предназначен для эксплуатации в районах с умеренным или холодным климатом соответственно (может так­же быть ТВ - тропический влажный климат; ТС - тропический сухой климат; Т - тропический влажный и сухой; 0 - любой климат на суше); 4 - размещение в помещениях с искусственно регулируемым климатом (может быть 1 - на открытом воздухе; 2 - помещения, плохо изолированные от окружающего воздуха, и навесы; 3 - обычные естественно вентилируемые помещения; 5 - помещения с повышенной влажностью и невентилируемые подземные помещения).

Пускорегулирующие аппараты для дуговых ртутных люминес­центных ламп (ДРЛ), дуговых ртутных йодидных (ДРИ), натрие­вых ламп высокого давления (НЛВД) обозначаются так: 1ДБИ-400ДРЛ/220-Н или 1ДБИ-400ДНаТ/220-В. Здесь ДБ - дроссель балластный; ДРЛ и ДНаТ - тип лампы (ДНаТ означает то же, что и НЛВД); Н - независимый пускорегулирующий аппарат.

Электрическая схема стартерных двухламповых пускорегули­рующих аппаратов дана на рис. 4.

Рис. 4. Электрическая схема стартерного пускорегулирующего аппарата 2 УБИ для двух ламп

1 – дроссель; 2 – лампы; 3 – стартеры.

Пускорегулирующие аппараты для дуговых ртутных люминес­центных ламп типа ДРЛ выполняются с дросселем (рис. 5).


Рис.5. Схема включения ламп типа ДРЛ через дроссель.

1 – дроссель; 2 – лампа; С – конденсатор.

Для включения ламп ДРИ и ДНаТ применяются пускорегу­лирующие аппараты с унифицированными устройствами им­пульсного зажигания, основными элементами которых служат диодные тиристоры (рис. 6). Здесь, однако, повторное включе­ние погасшей не оборудованной специальным блоком мгновен­ного перезажигания лампы возможно только после ее остыва­ния, т. е. через 10-15 мин.


Рис.6 Схема включения ламп типа ДРИ или ДНаТ.

1 – импульсное зажигающее устройство; 2 – балластный дроссель

3. Основные светотехнические величины

Количество света, излучаемого источником, называется све­товым потоком и обозначается Ф. Единица светового потока - люмен (лм).

Световой поток, заключенный внутри телесного угла , в вершине которого расположен точечный источник света силой J, определяется по формуле Ф = J.

Сила света J - это плотность светового потока в том или ином направлении; измеряется в канделах (кд).

Кандела - это сила света, испускаемая с площади 1/600 000 м 2 сечения полного излучателя в перпендикулярном к этому сече­нию направлении, при температуре излучателя, равной темпера­туре затвердевания платины (2045 К), и давлении 101 325 Па.

Телесный угол в равен отношению площади поверхности о, вырезанной на сфере конусом с вершиной в точке S, к квадрату радиуса r (рис. 2.1). Если r = 1, то телесный угол численно ра­вен площади поверхности, вырезанной конусом на сфере еди­ничного радиуса. Единицей телесного угла служит стерадиан (ср).

Таким образом, люмен есть произведе­ние канделы на стерадиан. Освещение рабочей поверхности будет тем лучше, чем больший световой поток приходится на эту поверхность. Степень освещения поверх­ности, т. е. плотность светового потока на освещаемую поверхность, характеризуется освещенностью Е, которая измеряется в люксах (лк). Если на 1 м 2 какой-либо по­верхности падает световой поток, равный 1 лм, то освещенность Е будет 1 лк, т. е. лм/м 2 .

При освещении рабочей поверхности в ней выделяются свет­лые и темные детали, различающиеся своей яркостью I ., которая зависит не только от освещенности, но и от отражающих свойств поверхности. Яркость определяет световое ощущение, получае­мое глазами. Если яркость поверхности очень мала, на ней труд­но различать подробности, и наоборот, если яркость очень вели­ка, то поверхность слепит глаза. Яркость равна отношению силы света к площади проекции отражающего (излучающего) тела в заданном направлении; измеряется в канделах на метр квадрат­ный (кд/м 2).

4. Техника безопасности при обслуживании электроосветительных установок

Организация работы по технике безопасности на объектах электромонтажных работ предусматривает: назначение лиц, от­ветственных за безопасность работ (производитель работ, на­чальники участков, мастера и бригадиры монтажных бригад); инструктаж по безопасным методам работы на рабочих местах; вывешивание предупредительных плакатов, установку огражде­ний, назначение дежурных при выполнении монтажных работ, опасных для окружающих.

Все монтажные работы на токоведущих частях или вблизи них должны производиться при снятом напряжении.

При монтаже электроустановок применяются различные ма­шины, механизмы и приспособления, облегчающие труд рабо­чих-монтажников и обеспечивающие безопасные условия рабо­ты. Неумелое обращение с указанными средствами механизации может быть причиной травм.

В электромонтажной практике широко применяются специ­альные автомобили и передвижные мастерские. Так, спецавто­мобиль типа СК-А с прицепом предназначен для перевозки и прокладки кабеля в земляных траншеях. Для монтажа воздуш­ных линий используют телескопические вышки, оборудованные корзиной, в которой монтажник может быть поднят на высоту до 26 м. Для подъема опор и деталей конструкций воздушной ли­нии применяют стреловые краны на колесном и гусеничном ходу.

На электромонтажных работах используется электрифициро­ванный рабочий инструмент. По защитным мерам от поражения электрическим током электрифицированный ручной инструмент делится на 3 класса:

I класс - машины с изоляцией всех деталей, находящихся под напряжением; штепсельная вилка имеет заземляющий контакт;

II класс - машины, у которых все детали, находящиеся под напряжением, имеют двойную или усиленную изоляцию; эти машины не имеют устройств для заземления;

III класс - машины на номинальное напряжение не выше 42 В.

Номинальное напряжение машин переменного тока I и II классов не должно превышать 380 В.

К электрифицированному инструменту относятся:

Сверлильные ручные электрические машины как с коллек­торными однофазными двигателями на номинальное на­пряжение 220 В, так и с трехфазными асинхронными дви­гателями на номинальное напряжение 36 и 220 В;

Электромолоток, предназначенный для пробивки проемов и ниш в кирпичной кладке и бетоне при монтаже прохо­дов через стены и перекрытия, при установке групповых щитов и щитков в случае скрытой электропроводки (но­минальное напряжение электродвигателя 220 В);

Электроперфоратор, предназначенный для бурения глубо­ких отверстий диаметром до 32 мм в стенах и перекрытиях зданий из кирпича или бетона на глубину до 700 мм;

Электрический бороздодел, предназначенный для выруба­ния борозд в кирпичных стенах для прокладки проводов скрытой электропроводки (ширина вырубаемой борозды 8 мм при глубине 20 мм).

К работе с ручными электрическими машинами допускаются рабочие, прошедшие производственное обучение по технике безопасности. Каждая машина должна иметь инвентарный номер.

Ручные электрические машины запрещается применять во взрывоопасных помещениях, а также в помещениях с химически активной средой, разрушающей металл и изоляцию.

Машины, не защищенные от брызг, не разрешается приме­нять на открытых площадках во время дождя или снегопада.

Перед работой с машиной необходимо проверить комплект­ность и надежность крепления деталей, исправность кабеля (шну­ра) и штепсельной вилки, целостность изоляционных деталей корпуса, рукоятки и крышек щеткодержателей, наличие защит­ных кожухов, работу выключателя и работу машины на холостом ходу. При работе машин I. класса необходимо применять индиви­дуальные электрозащитные средства (диэлектрические перчатки).

Для смены режущего инструмента, регулировки, при пере­носке ручной машины и перерывах в работе ее необходимо от­ключать.

Запрещается работать ручной электрической машиной при наличии хотя бы одной из следующих неисправностей: повреж­дение штепсельного соединения, кабеля (шнура) или их защит­ной трубки; повреждение крышки щеткодержателя машины с коллекторным электродвигателем; нечеткая работа выключателя; появление дыма, кругового огня на коллекторе, резкого запаха горелой изоляции; вытекание смазки; повышенный стук, шум, вибрация; поломка или появление трещин в корпусе, рукоятке либо защитном ограждении; поломка режущего инструмента.

Работы по монтажу воздушных линий электропередачи (сети наружного освещения) связаны с подъемом людей и материалов на высоту с помощью грузоподъемных машин и механизмов. При этом возникает опасность травмирования в случае падения с опор или других конструкций, а также поражения током мол­нии при работе во время грозы или наведенным напряжением от соседних линий.

Во время опускания нижнего конца опоры в котлован никто из рабочих не должен в нем находиться. Подъем на опору дол­жен осуществляться с помощью телескопической вышки, мон­терских когтей, лазов, лестниц. Во избежание ушибов и ранений в результате падения с высоты деталей и инструмента запреща­ется находиться под опорой и корзиной вышки во время произ­водства работ, не разрешается сбрасывать какие-либо предметы с высоты опоры.

При раскатке голого провода с барабана рабочий должен ра­ботать в брезентовых рукавицах. На время работ по монтажу ли­ний протяженностью более 3 км смонтированные участки про­водов необходимо замыкать накоротко и заземлять на случай по­явления на данном участке наведенного напряжения от соседних линий или от грозового облака.

Для прокладки кабеля по стенам или конструкциям здания на высоте 2 м и более следует применять прочные подмостки с ог­раждением в виде перил и бортовой доски (у настила). Не раз­решается прокладка кабеля с лестниц. Подъем кабеля для креп­ления его на опорных устройствах кабельной конструкции на высоту более 2 м необходимо производить с помощью рогаток и ручных блоков. На углах поворота кабельной линии не следует при раскатке оттягивать кабель руками. При прогреве кабеля в зимнее время электрическим током напряжением 220 В его обо­лочка должна быть заземлена во избежание электротравм в слу­чае замыкания токоведущей жилы на стальную броню или алю­миниевую (свинцовую) оболочку.

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.
.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

Проверенные временем лампы накаливания были преданы в нашей стране анафеме, но, несмотря на преобладание в ассортименте магазинов электротоваров «экономных» источников света, они все еще есть на прилавках и пользуются устойчивым спросом.

Конечно же, их конструкция, за почти сотню лет своего существования практически не претерпевшая изменений, кому-то может показаться архаичной и вызвать желание заняться модернизацией, чтобы они меньше потребляли электричества, реже перегорали и, вообще, вели себя «по-современному». Есть ли для этого возможности? Да, есть.

Один из способов осовременить «старушку» лампу накаливания – включить в цепь ее питания особый управляющий прибор – диммер. Этот англицизм происходит от слова «затемнять», а прибор занимается тем, что плавно уменьшает яркость свечения лампы.

Чтобы по своим уменьшила яркость свечения, надо уменьшить величину подаваемого на нее напряжения. Сделать это можно двумя способами:

  1. рассеять электрическую энергию на подходе к лампе;
  2. использовать питающее напряжение для запуска регулируемого прибора.

Рассеять электрическую энергию и не дать ей в полной мере дойти до лампы можно обычным реостатом . Таких миниатюрных приборов было немало в ламповых, да и полупроводниковых телевизорах, где они занимались различными регулировками. Например, звука. Если номинал небольшого реостата рассчитан на 220 вольт, то он без проблем погасит любую энергию от бытовой сети. Вопрос только в том, что при этом он сильно нагреется, ведь закон сохранения энергии еще никто не отменял.

Степень нагрева можно уменьшить, если использовать реостат больших размеров, например, балластный бытовой трансформатор , который включают в цепь питания электроприбора для компенсации временных бросков напряжения. Наличие у каждого выключателя большого – это не слишком эстетичное решение. Кроме того, рассеивание энергии не решает главной задачи – ее экономии. При включенном реостате, даже если лампочка светит вполнакала, счетчик будет крутиться с той же скоростью.

Чтобы электрическую энергию можно было реально сэкономить, надо между и выключателем поставить прибор, питающийся от сети, выходная мощность которого может регулироваться. Им может быть генератор автоколебаний , поскольку нить накаливания в лампе не различает тонкостей происхождения тока, ей главное – чтобы он был переменным.

Автоколебания – что это?

В радио- и электротехнике существует ряд схемных решений, которые позволяют менять направление выходного тока. Эти изменения направлений могут продолжаться до тех пор, пока на входе прибора существует питающее напряжение. Поэтому они называются автоколебаниями .

Если к выходу генератора автоколебаний подключить осциллограф, то на его экране вы увидите нечто, похожее на синусоиду. При внешней схожести с тем, что выдает , эти колебания имеют совершенно другую природу. По факту – это череда импульсов, меняющих знак.

Электротехнические приборы достаточно грубы, не отличают череды импульсов от синусоиды и прекрасно на них работают. Ярким примером такого «обмана» являются широко распространенные в последнее время , использующие автоколебания высокой частоты, за счет чего трансформатор прибора удалось уменьшить в несколько раз.

Вот такой генератор автоколебаний (только гораздо меньших размеров), выдающий череду импульсов с частотой 50 Гц, включается в цепь питания лампой накаливания. При создании схемы диммера для лампы накаливания используют современные полупроводниковые приборы – тиристоры, динисторы и симисторы.
Они позволяют наиболее просто управлять моментами отпирания и запирания, изменяя тем самым направления тока в цепи и генерируя автоколебания. Однако существуют генераторы автоколебаний на транзисторе, в основе которых лежит пара мощных полевых элементов. Также используют схему через блок защиты.

Плюсы и минусы регуляторов яркости ламп накаливания

Каждый прибор или устройство обладают суммой достоинств и недостатков, имеют их и диммеры ламп накаливания.

Главным, но, пожалуй, единственным достоинством этого прибора является то, что он позволяет регулировать яркость свечения, не вызывая побочного нагрева. Позволяет ли существенно сэкономить электрическую энергию и увеличить срок службы лампы? Судите сами:

  • для работы генератора автоколебаний переменный ток превращается в постоянный (на его входе стоит диодный мост), поэтому суммарный КПД устройства оказывается еще ниже, чем обычной лампы;
  • лампа накаливания при работе вне номинала напряжения также имеет более низкий КПД;
  • если начальное напряжение прибора более 30 процентов от номинальных 220 вольт, то начальный бросок тока при включении почти такой же, как и при работе от обычной сети.

Думается, что при таких условиях использование диммера является чисто эстетической прихотью.

Череда импульсов, выдаваемая диммером, является источником радиопомех. И чем короче импульс или выше частота их следования, тем шире спектр дополнительных гармоник.
Это физический закон и изменить его нельзя. Для компенсации этой неприятности в состав схемы прибора вводят LC фильтры (катушки с конденсаторами). Если в добавляются лампы большой мощности, имеющие длинную нить накаливания, то при минимальном напряжении они могут начать «петь» – именно из-за дополнительных гармоник.

Диммеры ламп накаливания категорически нельзя подсоединять в цепи питания компьютеров, телевизоров, радиоприемников, в , электронных пускорегулирующих аппаратов (ЭПРА). Вообще, если у вас в цепь управления осветительным прибором включен «затемнитель», при покупке ламп стоит обращать внимание на то, может ли она быть подвергнута диммированию.

Какие бывают диммеры

Несмотря на все недостатки этих приборов, они достаточно широко применяются. Во-первых, потому что какая-то экономия от их использования всё же наличествует, во-вторых, нельзя списывать со счетов и эстетический эффект.

Для потребителя, незнакомого с электротехникой, главным различием этих приборов является способ управления. Наиболее простые модели имеют ручку регулятора, расположенную на корпусе диммера. Если кому-то не нравится ручка, то есть модели с сенсорным управлением.

Самые дорогие из них имеют дистанционное управление – например, от пульта, похожего на «лентяйку», управляющую телевизором.
По принципу действия такие пульты различаются на работающие по радио- или инфракрасному каналу. Наиболее экзотические диммеры срабатывают от голоса, присутствия в помещении человека – управление с помощью разомкнутого емкостного контура или датчиков тепла.

В настоящее время многие ведущие производители электротехнической техники, такие как Schneider Electric, Feller, OSRAM и другие, начали выпуск диммеров не только для ламп накаливания, но и , а также люминесцентных источников света.

Пример регулирования яркости лампы с помощью диммера на видео



просмотров