Презентация на тему типы конденсаторов. Презентация на тему "конденсатор". Отношение заряда к напряжению будет оставаться

Презентация на тему типы конденсаторов. Презентация на тему "конденсатор". Отношение заряда к напряжению будет оставаться

МАОУ Гимназия №1

Презентация по физике в 10 кл

«Конденсаторы»

Учитель физики

I квалификационной категории

Г.Белогорск Амурская область

Клименко Елена Николаевна Учитель физики Презентация по теме «Линзы» 11 класс Муниципальное общеобразовательное учреждение средняя общеобразовательная школа с углубленным изучением отдельных предметов №1 Г.Белогорск Амурская область


КОНДЕНСАТОР – два проводника (обкладки), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

С- электроемкость (способность двух проводников накапливать электрический заряд).

С= q/U q- заряд, U- напряжение

В СИ электроемкость измеряется в Ф (фарад), 1Ф = 1 Кл/В


Электроемкость конденсатора зависит от:

  • расстояния между пластинами –d(м),
  • площади пластин –S(м),
  • от рода диэлектрика – ε(диэлектрическая проницаемость среды).

C =εέS/d

έ – электрическая постоянная



По виду диэлектрика конденсаторы различают на:

  • Вакуумные
  • Газообразные
  • Жидкие
  • Стеклянные
  • Слюдяные
  • Керамические
  • Бумажные
  • Электролитические
  • Оксидно-полупроводниковые

Способы соединения конденсаторов:

  • последовательное

2) параллельное


Конденсаторы различают по возможности изменения своей емкости :

  • постоянные конденсаторы - емкость не изменяется
  • переменные конденсаторы - емкость изменяется в процессе функционирования аппаратуры
  • Подстроечные конденсаторы – емкость изменяется при разовой или периодической регулировке и не изменяется в процессе работы аппаратуры

Энергия заряженного конденсатора определяется по формуле:

Си: [W] = Дж


Название

Емкость

Плоский конденсатор

Схема

Цилиндрический конденсатор

Сферический конденсатор

Применение конденсаторов :

  • Конденсаторы (совместно с катушками индуктивности и/или резисторами ) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров , цепей обратной связи , колебательных контуров и т. п.
  • При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках , электромагнитных ускорителях , импульсных лазерах с оптической накачкой , генераторах Маркса, (ГИН; ГИТ) , генераторах Кокрофта-Уолтона и т. п.
  • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
  • Измерителя уровня жидкости. Непроводящая жидкость, заполняет пространство между обкладками конденсатора, и ёмкость конденсатора меняется в зависимости от уровня
  • Измерительный преобразователь(ИП)влажности воздуха, древесины (изменение состава диэлектрика приводит к изменению ёмкости).
  • Конденсаторы способны накапливать большой заряд и создавать большую напряжённость на обкладках, которая используется для ускорения заряженных частиц или для создания кратковременных мощных электрических разрядов

Источники литературы:

1.Справочник по физике. Х.Кухлинг.,Москва «Мир», 1983.

2.Учебник по физике 10 кл.Г.Я.Мякишев. ,Б.Б.Буховцев., Н.Н.Сотский.2004.


Питер ван Мушенбрук ()


Что такое конденсатор? Конденсатор (от лат. condense «уплотнять», «сгущать») двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.лат.двухполюсникёмкостипроводимостью диэлектриком


Свойства конденсатора Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещенияцепи постоянного тока переменного токатоком смещения


В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом:метода комплексных амплитуд импедансом Резонансная частота конденсатора равна: Резонансная частота При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 23 раза ниже резонанснойкатушка индуктивности


Основные параметры. Ёмкость Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад. ёмкостьэлектрический зарядзаряд напряжениюфарад Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулойСИ


Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади. При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы, так как от источника питания они поступают только на внешние электроды, а на внутренних электродах они получаются только за счет разделения зарядов, ранее нейтрализовавших друг друга. Общая ёмкость батареи последовательно соединённых конденсаторов равна


Удельная ёмкость. Конденсаторы также характеризуются удельной ёмкостью отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.


Плотность энергии Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита. Например, у конденсатора EPCOS B4345 емкостью мкФ x 450 В и массой 1.9кг плотность энергии составляет 639Дж/кг или 845Дж/л. Особенно важен этот параметр при использовании конденсатора в качестве накопителя энергии, с последующим мгновенным её высвобождением, например, в пушке Гауссапушке Гаусса


Номинальное напряжение Другой, не менее важной характеристикой конденсаторов является номинальное напряжение значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.температурыскоростиносителей заряда


Полярность Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.электролитические электролитавзрыва

Муниципальное автономное общеобразовательное учреждение

«Лицей № 7» г. Бердск

Конденсаторы

8 класс

Учитель физики

И.В.Торопчина


Конденсатор

Конденсатор- это устройство, предназначенное для накопления электрического заряда и энергии электрического поля.


Конденсатор

Конденсатор представляет собой два

проводника (обкладки), разделенных слоем

диэлектрика, толщина которого мала по

сравнению с размерами проводников.


Все электрическое поле сосредоточено внутри конденсатора и однородно.

Заряд конденсатора - это абсолютное значение заряда одной из обкладок конденсатора.



- по виду диэлектрика : воздушные,

слюдяные, керамические,

электролитические. - по форме обкладок : плоские,

сферические, цилиндрические. - по величине емкости:

постоянные, переменные.


  • В зависимости от назначения конденсаторы имеют различное устройство.

  • Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера

Конденсаторы переменной электроемкости


Обозначение конденсаторов

Конденсатор постоянной ёмкости

Конденсатор переменной ёмкости


Электроемкость

Физическая величина, характеризующая способность двух проводников накапливать электрический заряд называется электроёмкостью, или ёмкостью.


При увеличении заряда в 2, 3, 4 раза соответственно в 2, 3, 4

раза увеличатся показания электрометра, т. е. увеличится

напряжение между пластинами конденсатора.

Отношение заряда к напряжению будет оставаться

постоянным:


Электроёмкость конденсатора

  • Величина, измеряемая отношением заряда ( q) одной из пластин конденсатора к напряжению ( U) между пластинами, называется электроёмкостью конденсатора .
  • Электроёмкость конденсатора вычисляется по формуле:

C = q / U


Единицы электроемкости

Электроемкость измеряется в фарадах(Ф)

[ С ] = 1Ф (фарад)

Электроемкость двух проводников численно

равна единице, если при сообщении им зарядов

+1 Кл и -1 Кл между ними возникает разность

потенциалов 1В

1Ф = 1Кл/В


Единицы электроемкости

1 мкФ (микрофарад)=10 -6 Ф

1 нФ (нанофарад)=10 -9 Ф

1 пФ (пикофарад)=10 -12 Ф



  • Чем больше площадь пластин, тем больше ёмкость конденсатора.
  • При уменьшении расстояния между пластинами конденсатора при неизменном заряде ёмкость конденсатора увеличивается.
  • При внесении диэлектрика ёмкость конденсатора увеличивается.

Емкость конденсатора зависит от площади пластин, расстояния между пластинами, от свойств внесённого диэлектрика.


Электроемкость

от геометрических

размеров проводников

Зависит

от формы проводников и

их взаимного расположения

от электрических свойств

среды между проводниками


Энергия конденсатора

  • Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. В соответствии с законом сохранения энергии, совершённая работа А равна энергии конденсатора Е, т. е

А = Е,

где Е - энергия конденсатора.

  • Работу электрическое поле конденсатора, можно найти по формуле: А = qU cp ,

где U ср - это среднее значение напряжения.

U ср = U/2; тогда А = qU ср = qU/2, так как q = CU, то А = CU 2 /2.

  • Энергия конденсатора ёмкостью С равна:

W = CU 2 /2


  • Конденсаторы могут длительное время накапливать энергию, а при разрядке они отдают её почти мгновенно.
  • Свойство конденсатора накапливать и быстро отдавать электрическую энергию широко используется в электротехнических и электронных устройствах, в медицинской технике (рентгеновская техника, устройства электротерапии), при изготовлении дозиметров, аэрофотосъёмке.


  • Лампа-вспышка питается электрическим током разрядки конденсатора.
  • Газоразрядные трубки зажигаются при разрядки батареи конденсаторов.
  • Радиотехника .


Первый конденсатор был изобретен в 1745 г. немецким юристом и учёным Эвальд Юрген фон Клейстом

Первый конденсатор: одна обкладка-ртуть, другая обкладка- рука экспериментатора, державшая банку.


  • Почти такой же опыт и почти в то же время был поставлен в голландском городе Лейдене профессором университета Питером ван Мушенбруком.
  • Зарядив воду и взяв банку в одну руку, он прикоснулся другой рукой к металлическому стержню, служившему для подвода заряда к воде. При этом Мушенбрук ощутил такой сильный удар в руки, плечи и грудь, что потерял сознание, и два дня приходил в себя.
  • Эксперимент ван Мушенбрука получил большую известность, поэтому конденсатор стал известен как «лейденская банка».

Домашнее задание

§ 54, Упражнение 38









Конденсаторы общего назначения – конденсаторы, применяемые в большинстве видов радиоэлектронной аппаратуры. К конденсаторам этого вида не применяются особые требования. Конденсаторы специального назначения – это все остальные конденсаторы. К ним относятся: импульсные, высоковольтные, пусковые, помехоподавляющие, а так же и другие конденсаторы.


Конденсаторы постоянной емкости – это конденсаторы, чья емкость является фиксированной и в процессе эксплуатации аппаратуры не меняется. Конденсаторы переменной емкости – применяются в цепях, где требуется изменение емкости в процессе эксплуатации. При этом изменение емкости может производится различными способами: механически, путем изменения управляющего напряжения, изменением температуры окружающей среды.


Незащищенные конденсаторы – вид конденсаторов, который не допускают к работе в условиях повышенной влажности. Возможно эксплуатация этих конденсаторов в составе герметизированной аппаратуры. Защищенные конденсаторы – могут работать в условия повышенной влажности.


Неизолированные конденсаторы – при использовании этого вида конденсаторов не допускается касания их корпусом шасси аппаратуры. Изолированные конденсаторы – имеют хорошо изолированный корпус, что делает возможным касания шасси аппаратуры или ее токоведущих поверхностей. Уплотненные конденсаторы – в конденсаторах этого вида используется корпус, уплотненный органическими материалами. Герметизированные конденсаторы – эти конденсаторы имеют герметизированный корпус, что исключает взаимодействие внутренней конструкции конденсатора с окружающей средой.



просмотров